Correct codacy warnings

This commit is contained in:
FilippoOlivo
2024-10-22 14:54:22 +02:00
committed by Nicola Demo
parent 1bc1b3a580
commit 3e30450e9a
10 changed files with 60 additions and 37 deletions

View File

@@ -27,7 +27,7 @@ class BaseDataset(Dataset):
if not hasattr(cls, '__slots__'):
raise TypeError(
'Something is wrong, __slots__ must be defined in subclasses.')
return super(BaseDataset, cls).__new__(cls)
return object.__new__(cls)
def __init__(self, problem, device):
""""

View File

@@ -26,7 +26,7 @@ class PinaDataModule(LightningDataModule):
eval_size=.1,
batch_size=None,
shuffle=True,
datasets = None):
datasets=None):
"""
Initialize the object, creating dataset based on input problem
:param AbstractProblem problem: PINA problem
@@ -38,9 +38,11 @@ class PinaDataModule(LightningDataModule):
:param datasets: list of datasets objects
"""
super().__init__()
dataset_classes = [SupervisedDataset, UnsupervisedDataset, SamplePointDataset]
dataset_classes = [SupervisedDataset, UnsupervisedDataset,
SamplePointDataset]
if datasets is None:
self.datasets = [DatasetClass(problem, device) for DatasetClass in dataset_classes]
self.datasets = [DatasetClass(problem, device) for DatasetClass in
dataset_classes]
else:
self.datasets = datasets
@@ -100,8 +102,6 @@ class PinaDataModule(LightningDataModule):
for key, value in dataset.condition_names.items()
}
def train_dataloader(self):
"""
Return the training dataloader for the dataset
@@ -158,11 +158,13 @@ class PinaDataModule(LightningDataModule):
if seed is not None:
generator = torch.Generator()
generator.manual_seed(seed)
indices = torch.randperm(sum(lengths), generator=generator).tolist()
indices = torch.randperm(sum(lengths),
generator=generator).tolist()
else:
indices = torch.arange(sum(lengths)).tolist()
else:
indices = torch.arange(0, sum(lengths), 1, dtype=torch.uint8).tolist()
indices = torch.arange(0, sum(lengths), 1,
dtype=torch.uint8).tolist()
offsets = [
sum(lengths[:i]) if i > 0 else 0 for i in range(len(lengths))
]

View File

@@ -5,6 +5,9 @@ from .pina_subset import PinaSubset
class Batch:
"""
Implementation of the Batch class used during training to perform SGD optimization.
"""
def __init__(self, dataset_dict, idx_dict):

View File

@@ -33,7 +33,7 @@ class PinaDataLoader:
Create batches according to the batch_size provided in input.
"""
self.batches = []
n_elements = sum([len(v) for v in self.dataset_dict.values()])
n_elements = sum(len(v) for v in self.dataset_dict.values())
if batch_size is None:
batch_size = n_elements
indexes_dict = {}

View File

@@ -1,3 +1,8 @@
"""
Module for PinaSubset class
"""
class PinaSubset:
"""
TODO

View File

@@ -6,8 +6,9 @@ from .base_dataset import BaseDataset
class UnsupervisedDataset(BaseDataset):
"""
This class extend BaseDataset class to handle unsupervised dataset,
composed of input points and, optionally, conditional variables
This class extend BaseDataset class to handle
unsupervised dataset,composed of input points
and, optionally, conditional variables
"""
data_type = 'unsupervised'
__slots__ = ['input_points', 'conditional_variables']