Automatize Tutorials html, py files creation (#496)
* workflow to export tutorials ---------
This commit is contained in:
committed by
FilippoOlivo
parent
8dfc9d19db
commit
3ff9f0c9a2
118
tutorials/tutorial11/tutorial.ipynb
vendored
118
tutorials/tutorial11/tutorial.ipynb
vendored
@@ -24,12 +24,13 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"try:\n",
|
||||
" import google.colab\n",
|
||||
" IN_COLAB = True\n",
|
||||
" import google.colab\n",
|
||||
"\n",
|
||||
" IN_COLAB = True\n",
|
||||
"except:\n",
|
||||
" IN_COLAB = False\n",
|
||||
" IN_COLAB = False\n",
|
||||
"if IN_COLAB:\n",
|
||||
" !pip install \"pina-mathlab\"\n",
|
||||
" !pip install \"pina-mathlab\"\n",
|
||||
"\n",
|
||||
"import torch\n",
|
||||
"import warnings\n",
|
||||
@@ -42,7 +43,7 @@
|
||||
"from pina.domain import CartesianDomain\n",
|
||||
"from pina.equation import Equation, FixedValue\n",
|
||||
"\n",
|
||||
"warnings.filterwarnings('ignore')"
|
||||
"warnings.filterwarnings(\"ignore\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -70,6 +71,7 @@
|
||||
" # calculate the residual and return it\n",
|
||||
" return u_x - u\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class SimpleODE(SpatialProblem):\n",
|
||||
"\n",
|
||||
" output_variables = [\"u\"]\n",
|
||||
@@ -101,7 +103,7 @@
|
||||
" layers=[10, 10],\n",
|
||||
" func=torch.nn.Tanh,\n",
|
||||
" output_dimensions=len(problem.output_variables),\n",
|
||||
" input_dimensions=len(problem.input_variables)\n",
|
||||
" input_dimensions=len(problem.input_variables),\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# create the PINN object\n",
|
||||
@@ -437,20 +439,22 @@
|
||||
],
|
||||
"source": [
|
||||
"model = FeedForward(\n",
|
||||
" layers=[10, 10],\n",
|
||||
" func=torch.nn.Tanh,\n",
|
||||
" output_dimensions=len(problem.output_variables),\n",
|
||||
" input_dimensions=len(problem.input_variables)\n",
|
||||
" )\n",
|
||||
" layers=[10, 10],\n",
|
||||
" func=torch.nn.Tanh,\n",
|
||||
" output_dimensions=len(problem.output_variables),\n",
|
||||
" input_dimensions=len(problem.input_variables),\n",
|
||||
")\n",
|
||||
"pinn = PINN(problem, model)\n",
|
||||
"trainer = Trainer(solver=pinn,\n",
|
||||
" accelerator='cpu',\n",
|
||||
" logger=True,\n",
|
||||
" callbacks=[NaiveMetricTracker()], # adding a callbacks\n",
|
||||
" enable_model_summary=False,\n",
|
||||
" train_size=1.0,\n",
|
||||
" val_size=0.0,\n",
|
||||
" test_size=0.0)\n",
|
||||
"trainer = Trainer(\n",
|
||||
" solver=pinn,\n",
|
||||
" accelerator=\"cpu\",\n",
|
||||
" logger=True,\n",
|
||||
" callbacks=[NaiveMetricTracker()], # adding a callbacks\n",
|
||||
" enable_model_summary=False,\n",
|
||||
" train_size=1.0,\n",
|
||||
" val_size=0.0,\n",
|
||||
" test_size=0.0,\n",
|
||||
")\n",
|
||||
"trainer.train()"
|
||||
]
|
||||
},
|
||||
@@ -486,7 +490,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"trainer.callbacks[0].saved_metrics[:3] # only the first three epochs"
|
||||
"trainer.callbacks[0].saved_metrics[:3] # only the first three epochs"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -615,19 +619,21 @@
|
||||
"seed_everything(42, workers=True)\n",
|
||||
"\n",
|
||||
"model = FeedForward(\n",
|
||||
" layers=[10, 10],\n",
|
||||
" func=torch.nn.Tanh,\n",
|
||||
" output_dimensions=len(problem.output_variables),\n",
|
||||
" input_dimensions=len(problem.input_variables)\n",
|
||||
" )\n",
|
||||
" layers=[10, 10],\n",
|
||||
" func=torch.nn.Tanh,\n",
|
||||
" output_dimensions=len(problem.output_variables),\n",
|
||||
" input_dimensions=len(problem.input_variables),\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"pinn = PINN(problem, model)\n",
|
||||
"trainer = Trainer(solver=pinn,\n",
|
||||
" accelerator='cpu',\n",
|
||||
" deterministic=True, # setting deterministic=True ensure reproducibility when a seed is imposed\n",
|
||||
" max_epochs = 2000,\n",
|
||||
" enable_model_summary=False,\n",
|
||||
" callbacks=[Timer()]) # adding a callbacks\n",
|
||||
"trainer = Trainer(\n",
|
||||
" solver=pinn,\n",
|
||||
" accelerator=\"cpu\",\n",
|
||||
" deterministic=True, # setting deterministic=True ensure reproducibility when a seed is imposed\n",
|
||||
" max_epochs=2000,\n",
|
||||
" enable_model_summary=False,\n",
|
||||
" callbacks=[Timer()],\n",
|
||||
") # adding a callbacks\n",
|
||||
"trainer.train()\n",
|
||||
"print(f'Total training time {trainer.callbacks[0].time_elapsed(\"train\"):.5f} s')"
|
||||
]
|
||||
@@ -698,19 +704,20 @@
|
||||
"seed_everything(42, workers=True)\n",
|
||||
"\n",
|
||||
"model = FeedForward(\n",
|
||||
" layers=[10, 10],\n",
|
||||
" func=torch.nn.Tanh,\n",
|
||||
" output_dimensions=len(problem.output_variables),\n",
|
||||
" input_dimensions=len(problem.input_variables)\n",
|
||||
" )\n",
|
||||
" layers=[10, 10],\n",
|
||||
" func=torch.nn.Tanh,\n",
|
||||
" output_dimensions=len(problem.output_variables),\n",
|
||||
" input_dimensions=len(problem.input_variables),\n",
|
||||
")\n",
|
||||
"pinn = PINN(problem, model)\n",
|
||||
"trainer = Trainer(solver=pinn,\n",
|
||||
" accelerator='cpu',\n",
|
||||
" deterministic=True,\n",
|
||||
" max_epochs = 2000,\n",
|
||||
" enable_model_summary=False,\n",
|
||||
" callbacks=[Timer(),\n",
|
||||
" StochasticWeightAveraging(swa_lrs=0.005)]) # adding StochasticWeightAveraging callbacks\n",
|
||||
"trainer = Trainer(\n",
|
||||
" solver=pinn,\n",
|
||||
" accelerator=\"cpu\",\n",
|
||||
" deterministic=True,\n",
|
||||
" max_epochs=2000,\n",
|
||||
" enable_model_summary=False,\n",
|
||||
" callbacks=[Timer(), StochasticWeightAveraging(swa_lrs=0.005)],\n",
|
||||
") # adding StochasticWeightAveraging callbacks\n",
|
||||
"trainer.train()\n",
|
||||
"print(f'Total training time {trainer.callbacks[0].time_elapsed(\"train\"):.5f} s')"
|
||||
]
|
||||
@@ -783,19 +790,20 @@
|
||||
"seed_everything(42, workers=True)\n",
|
||||
"\n",
|
||||
"model = FeedForward(\n",
|
||||
" layers=[10, 10],\n",
|
||||
" func=torch.nn.Tanh,\n",
|
||||
" output_dimensions=len(problem.output_variables),\n",
|
||||
" input_dimensions=len(problem.input_variables)\n",
|
||||
" )\n",
|
||||
" layers=[10, 10],\n",
|
||||
" func=torch.nn.Tanh,\n",
|
||||
" output_dimensions=len(problem.output_variables),\n",
|
||||
" input_dimensions=len(problem.input_variables),\n",
|
||||
")\n",
|
||||
"pinn = PINN(problem, model)\n",
|
||||
"trainer = Trainer(solver=pinn,\n",
|
||||
" accelerator='cpu',\n",
|
||||
" max_epochs = 2000,\n",
|
||||
" enable_model_summary=False,\n",
|
||||
" gradient_clip_val=0.1, # clipping the gradient\n",
|
||||
" callbacks=[Timer(),\n",
|
||||
" StochasticWeightAveraging(swa_lrs=0.005)])\n",
|
||||
"trainer = Trainer(\n",
|
||||
" solver=pinn,\n",
|
||||
" accelerator=\"cpu\",\n",
|
||||
" max_epochs=2000,\n",
|
||||
" enable_model_summary=False,\n",
|
||||
" gradient_clip_val=0.1, # clipping the gradient\n",
|
||||
" callbacks=[Timer(), StochasticWeightAveraging(swa_lrs=0.005)],\n",
|
||||
")\n",
|
||||
"trainer.train()\n",
|
||||
"print(f'Total training time {trainer.callbacks[0].time_elapsed(\"train\"):.5f} s')"
|
||||
]
|
||||
|
||||
Reference in New Issue
Block a user