Fix Codacy Warnings (#477)
--------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
committed by
Nicola Demo
parent
e3790e049a
commit
4177bfbb50
@@ -1,3 +1,7 @@
|
||||
"""
|
||||
Adaptive Activation Functions Module.
|
||||
"""
|
||||
|
||||
__all__ = [
|
||||
"AdaptiveActivationFunctionInterface",
|
||||
"AdaptiveReLU",
|
||||
|
||||
@@ -15,7 +15,7 @@ class AdaptiveReLU(AdaptiveActivationFunctionInterface):
|
||||
is defined as:
|
||||
|
||||
.. math::
|
||||
\text{ReLU}_{\text{adaptive}}({x}) = \alpha\,\text{ReLU}(\beta{x}+\gamma),
|
||||
\text{ReLU}_{\text{adaptive}}({x})=\alpha\,\text{ReLU}(\beta{x}+\gamma),
|
||||
|
||||
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
|
||||
ReLU function is defined as:
|
||||
@@ -50,13 +50,15 @@ class AdaptiveSigmoid(AdaptiveActivationFunctionInterface):
|
||||
r"""
|
||||
Adaptive trainable :class:`~torch.nn.Sigmoid` activation function.
|
||||
|
||||
Given the function :math:`\text{Sigmoid}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
|
||||
Given the function
|
||||
:math:`\text{Sigmoid}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
|
||||
the adaptive function
|
||||
:math:`\text{Sigmoid}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
|
||||
is defined as:
|
||||
|
||||
.. math::
|
||||
\text{Sigmoid}_{\text{adaptive}}({x}) = \alpha\,\text{Sigmoid}(\beta{x}+\gamma),
|
||||
\text{Sigmoid}_{\text{adaptive}}({x})=
|
||||
\alpha\,\text{Sigmoid}(\beta{x}+\gamma),
|
||||
|
||||
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
|
||||
Sigmoid function is defined as:
|
||||
@@ -97,7 +99,7 @@ class AdaptiveTanh(AdaptiveActivationFunctionInterface):
|
||||
is defined as:
|
||||
|
||||
.. math::
|
||||
\text{Tanh}_{\text{adaptive}}({x}) = \alpha\,\text{Tanh}(\beta{x}+\gamma),
|
||||
\text{Tanh}_{\text{adaptive}}({x})=\alpha\,\text{Tanh}(\beta{x}+\gamma),
|
||||
|
||||
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
|
||||
Tanh function is defined as:
|
||||
@@ -138,7 +140,7 @@ class AdaptiveSiLU(AdaptiveActivationFunctionInterface):
|
||||
is defined as:
|
||||
|
||||
.. math::
|
||||
\text{SiLU}_{\text{adaptive}}({x}) = \alpha\,\text{SiLU}(\beta{x}+\gamma),
|
||||
\text{SiLU}_{\text{adaptive}}({x})=\alpha\,\text{SiLU}(\beta{x}+\gamma),
|
||||
|
||||
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
|
||||
SiLU function is defined as:
|
||||
@@ -180,7 +182,7 @@ class AdaptiveMish(AdaptiveActivationFunctionInterface):
|
||||
is defined as:
|
||||
|
||||
.. math::
|
||||
\text{Mish}_{\text{adaptive}}({x}) = \alpha\,\text{Mish}(\beta{x}+\gamma),
|
||||
\text{Mish}_{\text{adaptive}}({x})=\alpha\,\text{Mish}(\beta{x}+\gamma),
|
||||
|
||||
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
|
||||
Mish function is defined as:
|
||||
@@ -265,7 +267,7 @@ class AdaptiveCELU(AdaptiveActivationFunctionInterface):
|
||||
is defined as:
|
||||
|
||||
.. math::
|
||||
\text{CELU}_{\text{adaptive}}({x}) = \alpha\,\text{CELU}(\beta{x}+\gamma),
|
||||
\text{CELU}_{\text{adaptive}}({x})=\alpha\,\text{CELU}(\beta{x}+\gamma),
|
||||
|
||||
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
|
||||
CELU function is defined as:
|
||||
@@ -306,13 +308,13 @@ class AdaptiveGELU(AdaptiveActivationFunctionInterface):
|
||||
is defined as:
|
||||
|
||||
.. math::
|
||||
\text{GELU}_{\text{adaptive}}({x}) = \alpha\,\text{GELU}(\beta{x}+\gamma),
|
||||
\text{GELU}_{\text{adaptive}}({x})=\alpha\,\text{GELU}(\beta{x}+\gamma),
|
||||
|
||||
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
|
||||
GELU function is defined as:
|
||||
|
||||
.. math::
|
||||
\text{GELU}(x) = 0.5 * x * (1 + \text{Tanh}(\sqrt{2 / \pi} * (x + 0.044715 * x^3)))
|
||||
\text{GELU}(x)=0.5*x*(1+\text{Tanh}(\sqrt{2 / \pi}*(x+0.044715*x^3)))
|
||||
|
||||
|
||||
.. seealso::
|
||||
@@ -342,13 +344,15 @@ class AdaptiveSoftmin(AdaptiveActivationFunctionInterface):
|
||||
r"""
|
||||
Adaptive trainable :class:`~torch.nn.Softmin` activation function.
|
||||
|
||||
Given the function :math:`\text{Softmin}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
|
||||
Given the function
|
||||
:math:`\text{Softmin}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
|
||||
the adaptive function
|
||||
:math:`\text{Softmin}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
|
||||
is defined as:
|
||||
|
||||
.. math::
|
||||
\text{Softmin}_{\text{adaptive}}({x}) = \alpha\,\text{Softmin}(\beta{x}+\gamma),
|
||||
\text{Softmin}_{\text{adaptive}}({x})=\alpha\,
|
||||
\text{Softmin}(\beta{x}+\gamma),
|
||||
|
||||
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
|
||||
Softmin function is defined as:
|
||||
@@ -383,13 +387,15 @@ class AdaptiveSoftmax(AdaptiveActivationFunctionInterface):
|
||||
r"""
|
||||
Adaptive trainable :class:`~torch.nn.Softmax` activation function.
|
||||
|
||||
Given the function :math:`\text{Softmax}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
|
||||
Given the function
|
||||
:math:`\text{Softmax}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
|
||||
the adaptive function
|
||||
:math:`\text{Softmax}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
|
||||
is defined as:
|
||||
|
||||
.. math::
|
||||
\text{Softmax}_{\text{adaptive}}({x}) = \alpha\,\text{Softmax}(\beta{x}+\gamma),
|
||||
\text{Softmax}_{\text{adaptive}}({x})=\alpha\,
|
||||
\text{Softmax}(\beta{x}+\gamma),
|
||||
|
||||
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
|
||||
Softmax function is defined as:
|
||||
|
||||
@@ -1,15 +1,15 @@
|
||||
"""Module for adaptive functions."""
|
||||
|
||||
import torch
|
||||
|
||||
from pina.utils import check_consistency
|
||||
from abc import ABCMeta
|
||||
import torch
|
||||
from ..utils import check_consistency, is_function
|
||||
|
||||
|
||||
class AdaptiveActivationFunctionInterface(torch.nn.Module, metaclass=ABCMeta):
|
||||
r"""
|
||||
The
|
||||
:class:`~pina.adaptive_function.adaptive_func_interface.AdaptiveActivationFunctionInterface`
|
||||
:class:`~pina.adaptive_function.adaptive_func_interface.\
|
||||
AdaptiveActivationFunctionInterface`
|
||||
class makes a :class:`torch.nn.Module` activation function into an adaptive
|
||||
trainable activation function. If one wants to create an adpative activation
|
||||
function, this class must be use as base class.
|
||||
@@ -104,9 +104,6 @@ class AdaptiveActivationFunctionInterface(torch.nn.Module, metaclass=ABCMeta):
|
||||
else:
|
||||
self.register_buffer("gamma", gamma)
|
||||
|
||||
# storing the activation
|
||||
self._func = None
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Define the computation performed at every call.
|
||||
@@ -144,3 +141,13 @@ class AdaptiveActivationFunctionInterface(torch.nn.Module, metaclass=ABCMeta):
|
||||
The callable activation function.
|
||||
"""
|
||||
return self._func
|
||||
|
||||
@func.setter
|
||||
def func(self, value):
|
||||
"""
|
||||
Set the activation function.
|
||||
"""
|
||||
if not is_function(value):
|
||||
raise TypeError("The function must be callable.")
|
||||
self._func = value
|
||||
return self._func
|
||||
|
||||
Reference in New Issue
Block a user