Fix Codacy Warnings (#477)

---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
Filippo Olivo
2025-03-10 15:38:45 +01:00
committed by Nicola Demo
parent e3790e049a
commit 4177bfbb50
157 changed files with 3473 additions and 3839 deletions

View File

@@ -1,4 +1,5 @@
import torch
"""Module for CartesianDomain class."""
import torch
from .domain_interface import DomainInterface
@@ -46,7 +47,8 @@ class CartesianDomain(DomainInterface):
def update(self, new_domain):
"""Adding new dimensions on the ``CartesianDomain``
:param CartesianDomain new_domain: A new ``CartesianDomain`` object to merge
:param CartesianDomain new_domain: A new ``CartesianDomain`` object
to merge
:Example:
>>> spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
@@ -78,7 +80,7 @@ class CartesianDomain(DomainInterface):
"""
dim = bounds.shape[0]
if mode in ["chebyshev", "grid"] and dim != 1:
raise RuntimeError("Something wrong in Span...")
raise RuntimeError("Something wrong in Cartesian...")
if mode == "random":
pts = torch.rand(size=(n, dim))
@@ -89,11 +91,10 @@ class CartesianDomain(DomainInterface):
# elif mode == 'lh' or mode == 'latin':
elif mode in ["lh", "latin"]:
pts = torch_lhs(n, dim)
else:
raise ValueError("Invalid mode")
pts *= bounds[:, 1] - bounds[:, 0]
pts += bounds[:, 0]
return pts
return pts * (bounds[:, 1] - bounds[:, 0]) + bounds[:, 0]
def sample(self, n, mode="random", variables="all"):
"""Sample routine.
@@ -121,7 +122,8 @@ class CartesianDomain(DomainInterface):
are sampled all together, and the final number of points
.. warning::
The extrema values of Span are always sampled only for ``grid`` mode.
The extrema values of Span are always sampled only for ``grid``
mode.
:Example:
>>> spatial_domain = Span({'x': [0, 1], 'y': [0, 1]})
@@ -153,7 +155,7 @@ class CartesianDomain(DomainInterface):
"""Sample independentely the variables and cross the results"""
tmp = []
for variable in variables:
if variable in self.range_.keys():
if variable in self.range_:
bound = torch.tensor([self.range_[variable]])
pts_variable = self._sample_range(n, mode, bound)
pts_variable = pts_variable.as_subclass(LabelTensor)
@@ -166,7 +168,7 @@ class CartesianDomain(DomainInterface):
result = result.append(i, mode="cross")
for variable in variables:
if variable in self.fixed_.keys():
if variable in self.fixed_:
value = self.fixed_[variable]
pts_variable = torch.tensor([[value]]).repeat(
result.shape[0], 1
@@ -201,7 +203,7 @@ class CartesianDomain(DomainInterface):
result.labels = keys
for variable in variables:
if variable in self.fixed_.keys():
if variable in self.fixed_:
value = self.fixed_[variable]
pts_variable = torch.tensor([[value]]).repeat(
result.shape[0], 1
@@ -224,7 +226,7 @@ class CartesianDomain(DomainInterface):
"""
tmp = []
for variable in variables:
if variable in self.fixed_.keys():
if variable in self.fixed_:
value = self.fixed_[variable]
pts_variable = torch.tensor([[value]]).repeat(n, 1)
pts_variable = pts_variable.as_subclass(LabelTensor)
@@ -244,15 +246,14 @@ class CartesianDomain(DomainInterface):
if self.fixed_ and (not self.range_):
return _single_points_sample(n, variables)
if isinstance(variables, str) and variables in self.fixed_.keys():
if isinstance(variables, str) and variables in self.fixed_:
return _single_points_sample(n, variables)
if mode in ["grid", "chebyshev"]:
return _1d_sampler(n, mode, variables).extract(variables)
elif mode in ["random", "lh", "latin"]:
if mode in ["random", "lh", "latin"]:
return _Nd_sampler(n, mode, variables).extract(variables)
else:
raise ValueError(f"mode={mode} is not valid.")
raise ValueError(f"mode={mode} is not valid.")
def is_inside(self, point, check_border=False):
"""Check if a point is inside the ellipsoid.