Fix Codacy Warnings (#477)

---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
Filippo Olivo
2025-03-10 15:38:45 +01:00
committed by Nicola Demo
parent e3790e049a
commit 4177bfbb50
157 changed files with 3473 additions and 3839 deletions

View File

@@ -1,3 +1,7 @@
"""
Module for loss functions and weighting functions.
"""
__all__ = [
"LossInterface",
"LpLoss",

View File

@@ -18,8 +18,8 @@ class LossInterface(_Loss, metaclass=ABCMeta):
will be applied, ``mean``: the sum of the output will be divided
by the number of elements in the output, ``sum``: the output will
be summed. Note: ``size_average`` and ``reduce`` are in the
process of being deprecated, and in the meantime, specifying either of
those two args will override ``reduction``. Default: ``mean``.
process of being deprecated, and in the meantime, specifying either
of those two args will override ``reduction``. Default: ``mean``.
"""
super().__init__(reduction=reduction, size_average=None, reduce=None)
@@ -32,7 +32,6 @@ class LossInterface(_Loss, metaclass=ABCMeta):
:return: Loss evaluation.
:rtype: torch.Tensor
"""
pass
def _reduction(self, loss):
"""Simple helper function to check reduction
@@ -42,8 +41,8 @@ class LossInterface(_Loss, metaclass=ABCMeta):
will be applied, ``mean``: the sum of the output will be divided
by the number of elements in the output, ``sum``: the output will
be summed. Note: ``size_average`` and ``reduce`` are in the
process of being deprecated, and in the meantime, specifying either of
those two args will override ``reduction``. Default: ``mean``.
process of being deprecated, and in the meantime, specifying either
of those two args will override ``reduction``. Default: ``mean``.
:type reduction: str
:param loss: Loss tensor for each element.
:type loss: torch.Tensor

View File

@@ -23,7 +23,8 @@ class LpLoss(LossInterface):
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = \frac{ [\sum_{i=1}^{D} | x_n^i - y_n^i|^p] }{[\sum_{i=1}^{D}|y_n^i|^p]},
l_n = \frac{ [\sum_{i=1}^{D} | x_n^i - y_n^i|^p] }
{[\sum_{i=1}^{D}|y_n^i|^p]},
where :math:`N` is the batch size. If ``reduction`` is not ``none``
(default ``mean``), then:
@@ -38,16 +39,19 @@ class LpLoss(LossInterface):
:math:`x` and :math:`y` are tensors of arbitrary shapes with a total
of :math:`n` elements each.
The sum operation still operates over all the elements, and divides by :math:`n`.
The sum operation still operates over all the elements, and divides by
:math:`n`.
The division by :math:`n` can be avoided if one sets ``reduction`` to ``sum``.
The division by :math:`n` can be avoided if one sets ``reduction`` to
``sum``.
"""
def __init__(self, p=2, reduction="mean", relative=False):
"""
:param int p: Degree of Lp norm. It specifies the type of norm to
be calculated. See `list of possible orders in torch linalg
<https://pytorch.org/docs/stable/generated/torch.linalg.norm.html#torch.linalg.norm>`_ to
`torch.linalg.norm <https://pytorch.org/docs/stable/generated/
torch.linalg.norm.html#torch.linalg.norm>`_
for possible degrees. Default 2 (euclidean norm).
:param str reduction: Specifies the reduction to apply to the output:
``none`` | ``mean`` | ``sum``. ``none``: no reduction

View File

@@ -17,13 +17,15 @@ class PowerLoss(LossInterface):
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = \frac{1}{D}\left[\sum_{i=1}^{D} \left| x_n^i - y_n^i \right|^p \right],
l_n = \frac{1}{D}\left[\sum_{i=1}^{D}
\left| x_n^i - y_n^i \right|^p\right],
If ``'relative'`` is set to true:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = \frac{ \sum_{i=1}^{D} | x_n^i - y_n^i|^p }{\sum_{i=1}^{D}|y_n^i|^p},
l_n = \frac{ \sum_{i=1}^{D} | x_n^i - y_n^i|^p }
{\sum_{i=1}^{D}|y_n^i|^p},
where :math:`N` is the batch size. If ``reduction`` is not ``none``
(default ``mean``), then:
@@ -38,16 +40,19 @@ class PowerLoss(LossInterface):
:math:`x` and :math:`y` are tensors of arbitrary shapes with a total
of :math:`n` elements each.
The sum operation still operates over all the elements, and divides by :math:`n`.
The sum operation still operates over all the elements, and divides by
:math:`n`.
The division by :math:`n` can be avoided if one sets ``reduction`` to ``sum``.
The division by :math:`n` can be avoided if one sets ``reduction`` to
``sum``.
"""
def __init__(self, p=2, reduction="mean", relative=False):
"""
:param int p: Degree of Lp norm. It specifies the type of norm to
be calculated. See `list of possible orders in torch linalg
<https://pytorch.org/docs/stable/generated/torch.linalg.norm.html#torch.linalg.norm>`_ to
<https://pytorch.org/docs/stable/generated/
torch.linalg.norm.html#torch.linalg.norm>`_ to
see the possible degrees. Default 2 (euclidean norm).
:param str reduction: Specifies the reduction to apply to the output:
``none`` | ``mean`` | ``sum``. When ``none``: no reduction

View File

@@ -20,4 +20,3 @@ class WeightingInterface(metaclass=ABCMeta):
:return: The losses aggregation. It should be a scalar Tensor.
:rtype: torch.Tensor
"""
pass