Fix Codacy Warnings (#477)

---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
Filippo Olivo
2025-03-10 15:38:45 +01:00
committed by Nicola Demo
parent e3790e049a
commit 4177bfbb50
157 changed files with 3473 additions and 3839 deletions

View File

@@ -75,34 +75,29 @@ class BaseContinuousConv(torch.nn.Module, metaclass=ABCMeta):
"""
super().__init__()
if isinstance(input_numb_field, int):
self._input_numb_field = input_numb_field
else:
if not isinstance(input_numb_field, int):
raise ValueError("input_numb_field must be int.")
self._input_numb_field = input_numb_field
if isinstance(output_numb_field, int):
self._output_numb_field = output_numb_field
else:
if not isinstance(output_numb_field, int):
raise ValueError("input_numb_field must be int.")
self._output_numb_field = output_numb_field
if isinstance(filter_dim, (tuple, list)):
vect = filter_dim
else:
if not isinstance(filter_dim, (tuple, list)):
raise ValueError("filter_dim must be tuple or list.")
vect = filter_dim
vect = torch.tensor(vect)
self.register_buffer("_dim", vect, persistent=False)
if isinstance(stride, dict):
self._stride = Stride(stride)
else:
if not isinstance(stride, dict):
raise ValueError("stride must be dictionary.")
self._stride = Stride(stride)
self._net = model
if isinstance(optimize, bool):
self._optimize = optimize
else:
if not isinstance(optimize, bool):
raise ValueError("optimize must be bool.")
self._optimize = optimize
# choosing how to initialize based on optimization
if self._optimize:
@@ -119,13 +114,18 @@ class BaseContinuousConv(torch.nn.Module, metaclass=ABCMeta):
if no_overlap:
raise NotImplementedError
self.transpose = self.transpose_no_overlap
else:
self.transpose = self.transpose_overlap
self.transpose = self.transpose_overlap
class DefaultKernel(torch.nn.Module):
"""
TODO
"""
def __init__(self, input_dim, output_dim):
"""
TODO
"""
super().__init__()
assert isinstance(input_dim, int)
assert isinstance(output_dim, int)
@@ -138,44 +138,66 @@ class BaseContinuousConv(torch.nn.Module, metaclass=ABCMeta):
)
def forward(self, x):
"""
TODO
"""
return self._model(x)
@property
def net(self):
"""
TODO
"""
return self._net
@property
def stride(self):
"""
TODO
"""
return self._stride
@property
def filter_dim(self):
"""
TODO
"""
return self._dim
@property
def input_numb_field(self):
"""
TODO
"""
return self._input_numb_field
@property
def output_numb_field(self):
"""
TODO
"""
return self._output_numb_field
@property
@abstractmethod
def forward(self, X):
pass
"""
TODO
"""
@property
@abstractmethod
def transpose_overlap(self, X):
pass
"""
TODO
"""
@property
@abstractmethod
def transpose_no_overlap(self, X):
pass
"""
TODO
"""
@property
@abstractmethod
def _initialize_convolution(self, X, type):
pass
def _initialize_convolution(self, X, type_):
"""
TODO
"""