Fix Codacy Warnings (#477)
--------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
committed by
Nicola Demo
parent
e3790e049a
commit
4177bfbb50
@@ -2,7 +2,6 @@
|
||||
|
||||
import torch
|
||||
from pina.utils import check_consistency
|
||||
from typing import Union, Sequence
|
||||
|
||||
|
||||
class PeriodicBoundaryEmbedding(torch.nn.Module):
|
||||
@@ -18,8 +17,9 @@ class PeriodicBoundaryEmbedding(torch.nn.Module):
|
||||
u(\mathbf{x}) = u(\mathbf{x} + n \mathbf{L})\;\;
|
||||
\forall n\in\mathbb{N}.
|
||||
|
||||
The :meth:`PeriodicBoundaryEmbedding` augments the input such that the periodic conditons
|
||||
is guarantee. The input is augmented by the following formula:
|
||||
The :meth:`PeriodicBoundaryEmbedding` augments the input such that the
|
||||
periodic conditonsis guarantee. The input is augmented by the following
|
||||
formula:
|
||||
|
||||
.. math::
|
||||
\mathbf{x} \rightarrow \tilde{\mathbf{x}} = \left[1,
|
||||
@@ -135,13 +135,13 @@ class PeriodicBoundaryEmbedding(torch.nn.Module):
|
||||
if isinstance(indeces[0], str):
|
||||
try:
|
||||
return x.extract(indeces)
|
||||
except AttributeError:
|
||||
except AttributeError as e:
|
||||
raise RuntimeError(
|
||||
"Not possible to extract input variables from tensor."
|
||||
" Ensure that the passed tensor is a LabelTensor or"
|
||||
" pass list of integers to extract variables. For"
|
||||
" more information refer to warning in the documentation."
|
||||
)
|
||||
) from e
|
||||
elif isinstance(indeces[0], int):
|
||||
return x[..., indeces]
|
||||
else:
|
||||
@@ -159,11 +159,14 @@ class PeriodicBoundaryEmbedding(torch.nn.Module):
|
||||
|
||||
|
||||
class FourierFeatureEmbedding(torch.nn.Module):
|
||||
"""
|
||||
Fourier Feature Embedding class for encoding input features
|
||||
using random Fourier features.
|
||||
"""
|
||||
|
||||
def __init__(self, input_dimension, output_dimension, sigma):
|
||||
r"""
|
||||
Fourier Feature Embedding class for encoding input features
|
||||
using random Fourier features.This class applies a Fourier
|
||||
transformation to the input features,
|
||||
This class applies a Fourier transformation to the input features,
|
||||
which can help in learning high-frequency variations in data.
|
||||
If multiple sigma are provided, the class
|
||||
supports multiscale feature embedding, creating embeddings for
|
||||
|
||||
Reference in New Issue
Block a user