Fix Codacy Warnings (#477)
--------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
committed by
Nicola Demo
parent
e3790e049a
commit
4177bfbb50
@@ -1,7 +1,10 @@
|
||||
"""
|
||||
TODO: Add title.
|
||||
"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch import nn
|
||||
from ...utils import check_consistency
|
||||
import warnings
|
||||
|
||||
|
||||
######## 1D Spectral Convolution ###########
|
||||
@@ -13,7 +16,8 @@ class SpectralConvBlock1D(nn.Module):
|
||||
|
||||
def __init__(self, input_numb_fields, output_numb_fields, n_modes):
|
||||
"""
|
||||
The module computes the spectral convolution of the input with a linear kernel in the
|
||||
The module computes the spectral convolution of the input with a linear
|
||||
kernel in the
|
||||
fourier space, and then it maps the input back to the physical
|
||||
space.
|
||||
|
||||
@@ -106,17 +110,20 @@ class SpectralConvBlock2D(nn.Module):
|
||||
|
||||
def __init__(self, input_numb_fields, output_numb_fields, n_modes):
|
||||
"""
|
||||
The module computes the spectral convolution of the input with a linear kernel in the
|
||||
The module computes the spectral convolution of the input with a linear
|
||||
kernel in the
|
||||
fourier space, and then it maps the input back to the physical
|
||||
space.
|
||||
|
||||
The block expects an input of size ``[batch, input_numb_fields, Nx, Ny]``
|
||||
The block expects an input of size
|
||||
``[batch, input_numb_fields, Nx, Ny]``
|
||||
and returns an output of size ``[batch, output_numb_fields, Nx, Ny]``.
|
||||
|
||||
:param int input_numb_fields: The number of channels for the input.
|
||||
:param int output_numb_fields: The number of channels for the output.
|
||||
:param list | tuple n_modes: Number of modes to select for each dimension.
|
||||
It must be at most equal to the ``floor(Nx/2)+1`` and ``floor(Ny/2)+1``.
|
||||
:param list | tuple n_modes: Number of modes to select for each
|
||||
dimension. It must be at most equal to the ``floor(Nx/2)+1`` and
|
||||
``floor(Ny/2)+1``.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
@@ -234,18 +241,21 @@ class SpectralConvBlock3D(nn.Module):
|
||||
|
||||
def __init__(self, input_numb_fields, output_numb_fields, n_modes):
|
||||
"""
|
||||
The module computes the spectral convolution of the input with a linear kernel in the
|
||||
The module computes the spectral convolution of the input with a
|
||||
linear kernel in the
|
||||
fourier space, and then it maps the input back to the physical
|
||||
space.
|
||||
|
||||
The block expects an input of size ``[batch, input_numb_fields, Nx, Ny, Nz]``
|
||||
and returns an output of size ``[batch, output_numb_fields, Nx, Ny, Nz]``.
|
||||
The block expects an input of size
|
||||
``[batch, input_numb_fields, Nx, Ny, Nz]``
|
||||
and returns an output of size
|
||||
``[batch, output_numb_fields, Nx, Ny, Nz]``.
|
||||
|
||||
:param int input_numb_fields: The number of channels for the input.
|
||||
:param int output_numb_fields: The number of channels for the output.
|
||||
:param list | tuple n_modes: Number of modes to select for each dimension.
|
||||
It must be at most equal to the ``floor(Nx/2)+1``, ``floor(Ny/2)+1``
|
||||
and ``floor(Nz/2)+1``.
|
||||
:param list | tuple n_modes: Number of modes to select for each
|
||||
dimension. It must be at most equal to the ``floor(Nx/2)+1``,
|
||||
``floor(Ny/2)+1`` and ``floor(Nz/2)+1``.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
@@ -347,7 +357,8 @@ class SpectralConvBlock3D(nn.Module):
|
||||
``[batch, input_numb_fields, x, y, z]``.
|
||||
:type x: torch.Tensor
|
||||
:return: The output tensor obtained from the
|
||||
spectral convolution of size ``[batch, output_numb_fields, x, y, z]``.
|
||||
spectral convolution of size
|
||||
``[batch, output_numb_fields, x, y, z]``.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
|
||||
|
||||
Reference in New Issue
Block a user