Fix Codacy Warnings (#477)
--------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
committed by
Nicola Demo
parent
e3790e049a
commit
4177bfbb50
@@ -1,6 +1,10 @@
|
||||
"""
|
||||
Module for the Graph Neural Operator and Graph Neural Kernel.
|
||||
"""
|
||||
|
||||
import torch
|
||||
from torch.nn import Tanh
|
||||
from .block import GNOBlock
|
||||
from .block.gno_block import GNOBlock
|
||||
from .kernel_neural_operator import KernelNeuralOperator
|
||||
|
||||
|
||||
@@ -30,14 +34,20 @@ class GraphNeuralKernel(torch.nn.Module):
|
||||
:type edge_features: int
|
||||
:param n_layers: The number of kernel layers.
|
||||
:type n_layers: int
|
||||
:param internal_n_layers: The number of layers the FF Neural Network internal to each Kernel Layer.
|
||||
:param internal_n_layers: The number of layers the FF Neural Network
|
||||
internal to each Kernel Layer.
|
||||
:type internal_n_layers: int
|
||||
:param internal_layers: Number of neurons of hidden layers(s) in the FF Neural Network inside for each Kernel Layer.
|
||||
:param internal_layers: Number of neurons of hidden layers(s) in the
|
||||
FF Neural Network inside for each Kernel Layer.
|
||||
:type internal_layers: list | tuple
|
||||
:param internal_func: The activation function used inside the computation of the representation of the edge features in the Graph Integral Layer.
|
||||
:param external_func: The activation function applied to the output of the Graph Integral Layer.
|
||||
:param internal_func: The activation function used inside the
|
||||
computation of the representation of the edge features in the
|
||||
Graph Integral Layer.
|
||||
:param external_func: The activation function applied to the output of
|
||||
the Graph Integral Layer.
|
||||
:type external_func: torch.nn.Module
|
||||
:param shared_weights: If ``True`` the weights of the Graph Integral Layers are shared.
|
||||
:param shared_weights: If ``True`` the weights of the Graph Integral
|
||||
Layers are shared.
|
||||
"""
|
||||
super().__init__()
|
||||
if external_func is None:
|
||||
@@ -56,7 +66,7 @@ class GraphNeuralKernel(torch.nn.Module):
|
||||
external_func=external_func,
|
||||
)
|
||||
self.n_layers = n_layers
|
||||
self.forward = self.forward_shared
|
||||
self._forward_func = self._forward_shared
|
||||
else:
|
||||
self.layers = torch.nn.ModuleList(
|
||||
[
|
||||
@@ -72,25 +82,21 @@ class GraphNeuralKernel(torch.nn.Module):
|
||||
for _ in range(n_layers)
|
||||
]
|
||||
)
|
||||
self._forward_func = self._forward_unshared
|
||||
|
||||
def forward(self, x, edge_index, edge_attr):
|
||||
"""
|
||||
The forward pass of the Graph Neural Kernel used when the weights are not shared.
|
||||
|
||||
:param x: The input batch.
|
||||
:type x: torch.Tensor
|
||||
:param edge_index: The edge index.
|
||||
:type edge_index: torch.Tensor
|
||||
:param edge_attr: The edge attributes.
|
||||
:type edge_attr: torch.Tensor
|
||||
"""
|
||||
def _forward_unshared(self, x, edge_index, edge_attr):
|
||||
for layer in self.layers:
|
||||
x = layer(x, edge_index, edge_attr)
|
||||
return x
|
||||
|
||||
def forward_shared(self, x, edge_index, edge_attr):
|
||||
def _forward_shared(self, x, edge_index, edge_attr):
|
||||
for _ in range(self.n_layers):
|
||||
x = self.layers(x, edge_index, edge_attr)
|
||||
return x
|
||||
|
||||
def forward(self, x, edge_index, edge_attr):
|
||||
"""
|
||||
The forward pass of the Graph Neural Kernel used when the weights are shared.
|
||||
The forward pass of the Graph Neural Kernel.
|
||||
|
||||
:param x: The input batch.
|
||||
:type x: torch.Tensor
|
||||
@@ -99,9 +105,7 @@ class GraphNeuralKernel(torch.nn.Module):
|
||||
:param edge_attr: The edge attributes.
|
||||
:type edge_attr: torch.Tensor
|
||||
"""
|
||||
for _ in range(self.n_layers):
|
||||
x = self.layers(x, edge_index, edge_attr)
|
||||
return x
|
||||
return self._forward_func(x, edge_index, edge_attr)
|
||||
|
||||
|
||||
class GraphNeuralOperator(KernelNeuralOperator):
|
||||
@@ -125,23 +129,31 @@ class GraphNeuralOperator(KernelNeuralOperator):
|
||||
"""
|
||||
The Graph Neural Operator constructor.
|
||||
|
||||
:param lifting_operator: The lifting operator mapping the node features to its hidden dimension.
|
||||
:param lifting_operator: The lifting operator mapping the node features
|
||||
to its hidden dimension.
|
||||
:type lifting_operator: torch.nn.Module
|
||||
:param projection_operator: The projection operator mapping the hidden representation of the nodes features to the output function.
|
||||
:param projection_operator: The projection operator mapping the hidden
|
||||
representation of the nodes features to the output function.
|
||||
:type projection_operator: torch.nn.Module
|
||||
:param edge_features: Number of edge features.
|
||||
:type edge_features: int
|
||||
:param n_layers: The number of kernel layers.
|
||||
:type n_layers: int
|
||||
:param internal_n_layers: The number of layers the Feed Forward Neural Network internal to each Kernel Layer.
|
||||
:param internal_n_layers: The number of layers the Feed Forward Neural
|
||||
Network internal to each Kernel Layer.
|
||||
:type internal_n_layers: int
|
||||
:param internal_layers: Number of neurons of hidden layers(s) in the FF Neural Network inside for each Kernel Layer.
|
||||
:param internal_layers: Number of neurons of hidden layers(s) in the
|
||||
FF Neural Network inside for each Kernel Layer.
|
||||
:type internal_layers: list | tuple
|
||||
:param internal_func: The activation function used inside the computation of the representation of the edge features in the Graph Integral Layer.
|
||||
:param internal_func: The activation function used inside the
|
||||
computation of the representation of the edge features in the
|
||||
Graph Integral Layer.
|
||||
:type internal_func: torch.nn.Module
|
||||
:param external_func: The activation function applied to the output of the Graph Integral Kernel.
|
||||
:param external_func: The activation function applied to the output of
|
||||
the Graph Integral Kernel.
|
||||
:type external_func: torch.nn.Module
|
||||
:param shared_weights: If ``True`` the weights of the Graph Integral Layers are shared.
|
||||
:param shared_weights: If ``True`` the weights of the Graph Integral
|
||||
Layers are shared.
|
||||
:type shared_weights: bool
|
||||
"""
|
||||
|
||||
|
||||
Reference in New Issue
Block a user