Fix Codacy Warnings (#477)
--------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
committed by
Nicola Demo
parent
e3790e049a
commit
4177bfbb50
@@ -1,7 +1,7 @@
|
||||
"""Module for the ParametricProblem class"""
|
||||
|
||||
import torch
|
||||
from abc import abstractmethod
|
||||
import torch
|
||||
from .abstract_problem import AbstractProblem
|
||||
|
||||
|
||||
@@ -16,40 +16,14 @@ class InverseProblem(AbstractProblem):
|
||||
derivative term.
|
||||
|
||||
:Example:
|
||||
>>> from pina.problem import SpatialProblem, InverseProblem
|
||||
>>> from pina.operator import grad
|
||||
>>> from pina.equation import ParametricEquation, FixedValue
|
||||
>>> from pina import Condition
|
||||
>>> from pina.geometry import CartesianDomain
|
||||
>>> import torch
|
||||
>>>
|
||||
>>> class InverseODE(SpatialProblem, InverseProblem):
|
||||
>>>
|
||||
>>> output_variables = ['u']
|
||||
>>> spatial_domain = CartesianDomain({'x': [0, 1]})
|
||||
>>> unknown_parameter_domain = CartesianDomain({'alpha': [1, 10]})
|
||||
>>>
|
||||
>>> def ode_equation(input_, output_, params_):
|
||||
>>> u_x = grad(output_, input_, components=['u'], d=['x'])
|
||||
>>> u = output_.extract(['u'])
|
||||
>>> return params_.extract(['alpha']) * u_x - u
|
||||
>>>
|
||||
>>> def solution_data(input_, output_):
|
||||
>>> x = input_.extract(['x'])
|
||||
>>> solution = torch.exp(x)
|
||||
>>> return output_ - solution
|
||||
>>>
|
||||
>>> conditions = {
|
||||
>>> 'x0': Condition(CartesianDomain({'x': 0}), FixedValue(1.0)),
|
||||
>>> 'D': Condition(CartesianDomain({'x': [0, 1]}), ParametricEquation(ode_equation)),
|
||||
>>> 'data': Condition(CartesianDomain({'x': [0, 1]}), Equation(solution_data))
|
||||
TODO
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
# storing unknown_parameters for optimization
|
||||
self.unknown_parameters = {}
|
||||
for i, var in enumerate(self.unknown_variables):
|
||||
for var in self.unknown_variables:
|
||||
range_var = self.unknown_parameter_domain.range_[var]
|
||||
tensor_var = (
|
||||
torch.rand(1, requires_grad=True) * range_var[1] + range_var[0]
|
||||
@@ -61,7 +35,6 @@ class InverseProblem(AbstractProblem):
|
||||
"""
|
||||
The parameters' domain of the problem.
|
||||
"""
|
||||
pass
|
||||
|
||||
@property
|
||||
def unknown_variables(self):
|
||||
|
||||
Reference in New Issue
Block a user