Fix Codacy Warnings (#477)
--------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
committed by
Nicola Demo
parent
e3790e049a
commit
4177bfbb50
@@ -1,62 +1,85 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.adaptive_function import (AdaptiveReLU, AdaptiveSigmoid, AdaptiveTanh,
|
||||
AdaptiveSiLU, AdaptiveMish, AdaptiveELU,
|
||||
AdaptiveCELU, AdaptiveGELU, AdaptiveSoftmin,
|
||||
AdaptiveSoftmax, AdaptiveSIREN, AdaptiveExp)
|
||||
from pina.adaptive_function import (
|
||||
AdaptiveReLU,
|
||||
AdaptiveSigmoid,
|
||||
AdaptiveTanh,
|
||||
AdaptiveSiLU,
|
||||
AdaptiveMish,
|
||||
AdaptiveELU,
|
||||
AdaptiveCELU,
|
||||
AdaptiveGELU,
|
||||
AdaptiveSoftmin,
|
||||
AdaptiveSoftmax,
|
||||
AdaptiveSIREN,
|
||||
AdaptiveExp,
|
||||
)
|
||||
|
||||
|
||||
adaptive_function = (AdaptiveReLU, AdaptiveSigmoid, AdaptiveTanh,
|
||||
AdaptiveSiLU, AdaptiveMish, AdaptiveELU,
|
||||
AdaptiveCELU, AdaptiveGELU, AdaptiveSoftmin,
|
||||
AdaptiveSoftmax, AdaptiveSIREN, AdaptiveExp)
|
||||
adaptive_function = (
|
||||
AdaptiveReLU,
|
||||
AdaptiveSigmoid,
|
||||
AdaptiveTanh,
|
||||
AdaptiveSiLU,
|
||||
AdaptiveMish,
|
||||
AdaptiveELU,
|
||||
AdaptiveCELU,
|
||||
AdaptiveGELU,
|
||||
AdaptiveSoftmin,
|
||||
AdaptiveSoftmax,
|
||||
AdaptiveSIREN,
|
||||
AdaptiveExp,
|
||||
)
|
||||
x = torch.rand(10, requires_grad=True)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("Func", adaptive_function)
|
||||
def test_constructor(Func):
|
||||
if Func.__name__ == 'AdaptiveExp':
|
||||
if Func.__name__ == "AdaptiveExp":
|
||||
# simple
|
||||
Func()
|
||||
# setting values
|
||||
af = Func(alpha=1., beta=2.)
|
||||
af = Func(alpha=1.0, beta=2.0)
|
||||
assert af.alpha.requires_grad
|
||||
assert af.beta.requires_grad
|
||||
assert af.alpha == 1.
|
||||
assert af.beta == 2.
|
||||
assert af.alpha == 1.0
|
||||
assert af.beta == 2.0
|
||||
else:
|
||||
# simple
|
||||
Func()
|
||||
# setting values
|
||||
af = Func(alpha=1., beta=2., gamma=3.)
|
||||
af = Func(alpha=1.0, beta=2.0, gamma=3.0)
|
||||
assert af.alpha.requires_grad
|
||||
assert af.beta.requires_grad
|
||||
assert af.gamma.requires_grad
|
||||
assert af.alpha == 1.
|
||||
assert af.beta == 2.
|
||||
assert af.gamma == 3.
|
||||
assert af.alpha == 1.0
|
||||
assert af.beta == 2.0
|
||||
assert af.gamma == 3.0
|
||||
|
||||
# fixed variables
|
||||
af = Func(alpha=1., beta=2., fixed=['alpha'])
|
||||
af = Func(alpha=1.0, beta=2.0, fixed=["alpha"])
|
||||
assert af.alpha.requires_grad is False
|
||||
assert af.beta.requires_grad
|
||||
assert af.alpha == 1.
|
||||
assert af.beta == 2.
|
||||
assert af.alpha == 1.0
|
||||
assert af.beta == 2.0
|
||||
|
||||
with pytest.raises(TypeError):
|
||||
Func(alpha=1., beta=2., fixed=['delta'])
|
||||
Func(alpha=1.0, beta=2.0, fixed=["delta"])
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
Func(alpha='s')
|
||||
Func(alpha="s")
|
||||
Func(alpha=1)
|
||||
|
||||
@pytest.mark.parametrize("Func", adaptive_function)
|
||||
|
||||
@pytest.mark.parametrize("Func", adaptive_function)
|
||||
def test_forward(Func):
|
||||
af = Func()
|
||||
af(x)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("Func", adaptive_function)
|
||||
def test_backward(Func):
|
||||
af = Func()
|
||||
y = af(x)
|
||||
y.mean().backward()
|
||||
y.mean().backward()
|
||||
|
||||
Reference in New Issue
Block a user