Fix Codacy Warnings (#477)

---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
Filippo Olivo
2025-03-10 15:38:45 +01:00
committed by Nicola Demo
parent e3790e049a
commit 4177bfbb50
157 changed files with 3473 additions and 3839 deletions

View File

@@ -5,54 +5,66 @@ from pina.model.block import LowRankBlock
from pina import LabelTensor
input_dimensions=2
embedding_dimenion=1
rank=4
inner_size=20
n_layers=2
func=torch.nn.Tanh
bias=True
input_dimensions = 2
embedding_dimenion = 1
rank = 4
inner_size = 20
n_layers = 2
func = torch.nn.Tanh
bias = True
def test_constructor():
LowRankBlock(input_dimensions=input_dimensions,
embedding_dimenion=embedding_dimenion,
rank=rank,
inner_size=inner_size,
n_layers=n_layers,
func=func,
bias=bias)
LowRankBlock(
input_dimensions=input_dimensions,
embedding_dimenion=embedding_dimenion,
rank=rank,
inner_size=inner_size,
n_layers=n_layers,
func=func,
bias=bias,
)
def test_constructor_wrong():
with pytest.raises(ValueError):
LowRankBlock(input_dimensions=input_dimensions,
embedding_dimenion=embedding_dimenion,
rank=0.5,
inner_size=inner_size,
n_layers=n_layers,
func=func,
bias=bias)
LowRankBlock(
input_dimensions=input_dimensions,
embedding_dimenion=embedding_dimenion,
rank=0.5,
inner_size=inner_size,
n_layers=n_layers,
func=func,
bias=bias,
)
def test_forward():
block = LowRankBlock(input_dimensions=input_dimensions,
embedding_dimenion=embedding_dimenion,
rank=rank,
inner_size=inner_size,
n_layers=n_layers,
func=func,
bias=bias)
data = LabelTensor(torch.rand(10, 30, 3), labels=['x', 'y', 'u'])
block(data.extract('u'), data.extract(['x', 'y']))
block = LowRankBlock(
input_dimensions=input_dimensions,
embedding_dimenion=embedding_dimenion,
rank=rank,
inner_size=inner_size,
n_layers=n_layers,
func=func,
bias=bias,
)
data = LabelTensor(torch.rand(10, 30, 3), labels=["x", "y", "u"])
block(data.extract("u"), data.extract(["x", "y"]))
def test_backward():
block = LowRankBlock(input_dimensions=input_dimensions,
embedding_dimenion=embedding_dimenion,
rank=rank,
inner_size=inner_size,
n_layers=n_layers,
func=func,
bias=bias)
data = LabelTensor(torch.rand(10, 30, 3), labels=['x', 'y', 'u'])
block = LowRankBlock(
input_dimensions=input_dimensions,
embedding_dimenion=embedding_dimenion,
rank=rank,
inner_size=inner_size,
n_layers=n_layers,
func=func,
bias=bias,
)
data = LabelTensor(torch.rand(10, 30, 3), labels=["x", "y", "u"])
data.requires_grad_(True)
out = block(data.extract('u'), data.extract(['x', 'y']))
out = block(data.extract("u"), data.extract(["x", "y"]))
loss = out.mean()
loss.backward()
loss.backward()