Fix Codacy Warnings (#477)
--------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
committed by
Nicola Demo
parent
e3790e049a
commit
4177bfbb50
@@ -1,4 +1,8 @@
|
||||
from pina.model.block import SpectralConvBlock1D, SpectralConvBlock2D, SpectralConvBlock3D
|
||||
from pina.model.block import (
|
||||
SpectralConvBlock1D,
|
||||
SpectralConvBlock2D,
|
||||
SpectralConvBlock3D,
|
||||
)
|
||||
import torch
|
||||
|
||||
input_numb_fields = 3
|
||||
@@ -7,78 +11,96 @@ batch = 5
|
||||
|
||||
|
||||
def test_constructor_1d():
|
||||
SpectralConvBlock1D(input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=5)
|
||||
SpectralConvBlock1D(
|
||||
input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=5,
|
||||
)
|
||||
|
||||
|
||||
def test_forward_1d():
|
||||
sconv = SpectralConvBlock1D(input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=4)
|
||||
sconv = SpectralConvBlock1D(
|
||||
input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=4,
|
||||
)
|
||||
x = torch.rand(batch, input_numb_fields, 10)
|
||||
sconv(x)
|
||||
|
||||
|
||||
def test_backward_1d():
|
||||
sconv = SpectralConvBlock1D(input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=4)
|
||||
sconv = SpectralConvBlock1D(
|
||||
input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=4,
|
||||
)
|
||||
x = torch.rand(batch, input_numb_fields, 10)
|
||||
x.requires_grad = True
|
||||
sconv(x)
|
||||
l=torch.mean(sconv(x))
|
||||
l = torch.mean(sconv(x))
|
||||
l.backward()
|
||||
assert x._grad.shape == torch.Size([5,3,10])
|
||||
assert x._grad.shape == torch.Size([5, 3, 10])
|
||||
|
||||
|
||||
def test_constructor_2d():
|
||||
SpectralConvBlock2D(input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=[5, 4])
|
||||
SpectralConvBlock2D(
|
||||
input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=[5, 4],
|
||||
)
|
||||
|
||||
|
||||
def test_forward_2d():
|
||||
sconv = SpectralConvBlock2D(input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=[5, 4])
|
||||
sconv = SpectralConvBlock2D(
|
||||
input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=[5, 4],
|
||||
)
|
||||
x = torch.rand(batch, input_numb_fields, 10, 10)
|
||||
sconv(x)
|
||||
|
||||
|
||||
def test_backward_2d():
|
||||
sconv = SpectralConvBlock2D(input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=[5, 4])
|
||||
sconv = SpectralConvBlock2D(
|
||||
input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=[5, 4],
|
||||
)
|
||||
x = torch.rand(batch, input_numb_fields, 10, 10)
|
||||
x.requires_grad = True
|
||||
sconv(x)
|
||||
l=torch.mean(sconv(x))
|
||||
l = torch.mean(sconv(x))
|
||||
l.backward()
|
||||
assert x._grad.shape == torch.Size([5,3,10,10])
|
||||
assert x._grad.shape == torch.Size([5, 3, 10, 10])
|
||||
|
||||
|
||||
def test_constructor_3d():
|
||||
SpectralConvBlock3D(input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=[5, 4, 4])
|
||||
SpectralConvBlock3D(
|
||||
input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=[5, 4, 4],
|
||||
)
|
||||
|
||||
|
||||
def test_forward_3d():
|
||||
sconv = SpectralConvBlock3D(input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=[5, 4, 4])
|
||||
sconv = SpectralConvBlock3D(
|
||||
input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=[5, 4, 4],
|
||||
)
|
||||
x = torch.rand(batch, input_numb_fields, 10, 10, 10)
|
||||
sconv(x)
|
||||
|
||||
|
||||
def test_backward_3d():
|
||||
sconv = SpectralConvBlock3D(input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=[5, 4, 4])
|
||||
sconv = SpectralConvBlock3D(
|
||||
input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=[5, 4, 4],
|
||||
)
|
||||
x = torch.rand(batch, input_numb_fields, 10, 10, 10)
|
||||
x.requires_grad = True
|
||||
sconv(x)
|
||||
l=torch.mean(sconv(x))
|
||||
l = torch.mean(sconv(x))
|
||||
l.backward()
|
||||
assert x._grad.shape == torch.Size([5,3,10,10,10])
|
||||
assert x._grad.shape == torch.Size([5, 3, 10, 10, 10])
|
||||
|
||||
Reference in New Issue
Block a user