Fix Codacy Warnings (#477)

---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
Filippo Olivo
2025-03-10 15:38:45 +01:00
committed by Nicola Demo
parent e3790e049a
commit 4177bfbb50
157 changed files with 3473 additions and 3839 deletions

View File

@@ -1,4 +1,8 @@
from pina.model.block import SpectralConvBlock1D, SpectralConvBlock2D, SpectralConvBlock3D
from pina.model.block import (
SpectralConvBlock1D,
SpectralConvBlock2D,
SpectralConvBlock3D,
)
import torch
input_numb_fields = 3
@@ -7,78 +11,96 @@ batch = 5
def test_constructor_1d():
SpectralConvBlock1D(input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=5)
SpectralConvBlock1D(
input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=5,
)
def test_forward_1d():
sconv = SpectralConvBlock1D(input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=4)
sconv = SpectralConvBlock1D(
input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=4,
)
x = torch.rand(batch, input_numb_fields, 10)
sconv(x)
def test_backward_1d():
sconv = SpectralConvBlock1D(input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=4)
sconv = SpectralConvBlock1D(
input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=4,
)
x = torch.rand(batch, input_numb_fields, 10)
x.requires_grad = True
sconv(x)
l=torch.mean(sconv(x))
l = torch.mean(sconv(x))
l.backward()
assert x._grad.shape == torch.Size([5,3,10])
assert x._grad.shape == torch.Size([5, 3, 10])
def test_constructor_2d():
SpectralConvBlock2D(input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=[5, 4])
SpectralConvBlock2D(
input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=[5, 4],
)
def test_forward_2d():
sconv = SpectralConvBlock2D(input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=[5, 4])
sconv = SpectralConvBlock2D(
input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=[5, 4],
)
x = torch.rand(batch, input_numb_fields, 10, 10)
sconv(x)
def test_backward_2d():
sconv = SpectralConvBlock2D(input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=[5, 4])
sconv = SpectralConvBlock2D(
input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=[5, 4],
)
x = torch.rand(batch, input_numb_fields, 10, 10)
x.requires_grad = True
sconv(x)
l=torch.mean(sconv(x))
l = torch.mean(sconv(x))
l.backward()
assert x._grad.shape == torch.Size([5,3,10,10])
assert x._grad.shape == torch.Size([5, 3, 10, 10])
def test_constructor_3d():
SpectralConvBlock3D(input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=[5, 4, 4])
SpectralConvBlock3D(
input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=[5, 4, 4],
)
def test_forward_3d():
sconv = SpectralConvBlock3D(input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=[5, 4, 4])
sconv = SpectralConvBlock3D(
input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=[5, 4, 4],
)
x = torch.rand(batch, input_numb_fields, 10, 10, 10)
sconv(x)
def test_backward_3d():
sconv = SpectralConvBlock3D(input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=[5, 4, 4])
sconv = SpectralConvBlock3D(
input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=[5, 4, 4],
)
x = torch.rand(batch, input_numb_fields, 10, 10, 10)
x.requires_grad = True
sconv(x)
l=torch.mean(sconv(x))
l = torch.mean(sconv(x))
l.backward()
assert x._grad.shape == torch.Size([5,3,10,10,10])
assert x._grad.shape == torch.Size([5, 3, 10, 10, 10])