Fix Codacy Warnings (#477)

---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
Filippo Olivo
2025-03-10 15:38:45 +01:00
committed by Nicola Demo
parent e3790e049a
commit 4177bfbb50
157 changed files with 3473 additions and 3839 deletions

View File

@@ -78,20 +78,12 @@ def test_getitem(conditions_dict, max_conditions_lengths):
data = dataset[50]
assert isinstance(data, dict)
assert all([isinstance(d["input"], Data) for d in data.values()])
assert all([isinstance(d["target"], torch.Tensor) for d in data.values()])
assert all(
[isinstance(d["target"], torch.Tensor) for d in data.values()]
[d["input"].x.shape == torch.Size((20, 10)) for d in data.values()]
)
assert all(
[
d["input"].x.shape == torch.Size((20, 10))
for d in data.values()
]
)
assert all(
[
d["target"].shape == torch.Size((20, 10))
for d in data.values()
]
[d["target"].shape == torch.Size((20, 10)) for d in data.values()]
)
assert all(
[
@@ -99,27 +91,17 @@ def test_getitem(conditions_dict, max_conditions_lengths):
for d in data.values()
]
)
assert all(
[d["input"].edge_attr.shape[0] == 60 for d in data.values()]
)
assert all([d["input"].edge_attr.shape[0] == 60 for d in data.values()])
data = dataset.fetch_from_idx_list([i for i in range(20)])
assert isinstance(data, dict)
assert all([isinstance(d["input"], Data) for d in data.values()])
assert all([isinstance(d["target"], torch.Tensor) for d in data.values()])
assert all(
[isinstance(d["target"], torch.Tensor) for d in data.values()]
[d["input"].x.shape == torch.Size((400, 10)) for d in data.values()]
)
assert all(
[
d["input"].x.shape == torch.Size((400, 10))
for d in data.values()
]
)
assert all(
[
d["target"].shape == torch.Size((400, 10))
for d in data.values()
]
[d["target"].shape == torch.Size((400, 10)) for d in data.values()]
)
assert all(
[
@@ -127,6 +109,4 @@ def test_getitem(conditions_dict, max_conditions_lengths):
for d in data.values()
]
)
assert all(
[d["input"].edge_attr.shape[0] == 1200 for d in data.values()]
)
assert all([d["input"].edge_attr.shape[0] == 1200 for d in data.values()])

View File

@@ -9,80 +9,78 @@ input_tensor_2 = torch.rand((50, 10))
output_tensor_2 = torch.rand((50, 2))
conditions_dict_single = {
'data': {
'input': input_tensor,
'target': output_tensor,
"data": {
"input": input_tensor,
"target": output_tensor,
}
}
conditions_dict_single_multi = {
'data_1': {
'input': input_tensor,
'target': output_tensor,
"data_1": {
"input": input_tensor,
"target": output_tensor,
},
"data_2": {
"input": input_tensor_2,
"target": output_tensor_2,
},
'data_2': {
'input': input_tensor_2,
'target': output_tensor_2,
}
}
max_conditions_lengths_single = {
'data': 100
}
max_conditions_lengths_single = {"data": 100}
max_conditions_lengths_multi = {
'data_1': 100,
'data_2': 50
}
max_conditions_lengths_multi = {"data_1": 100, "data_2": 50}
@pytest.mark.parametrize(
"conditions_dict, max_conditions_lengths",
[
(conditions_dict_single, max_conditions_lengths_single),
(conditions_dict_single_multi, max_conditions_lengths_multi)
]
(conditions_dict_single_multi, max_conditions_lengths_multi),
],
)
def test_constructor_tensor(conditions_dict, max_conditions_lengths):
dataset = PinaDatasetFactory(conditions_dict,
max_conditions_lengths=max_conditions_lengths,
automatic_batching=True)
dataset = PinaDatasetFactory(
conditions_dict,
max_conditions_lengths=max_conditions_lengths,
automatic_batching=True,
)
assert isinstance(dataset, PinaTensorDataset)
def test_getitem_single():
dataset = PinaDatasetFactory(conditions_dict_single,
max_conditions_lengths=max_conditions_lengths_single,
automatic_batching=False)
dataset = PinaDatasetFactory(
conditions_dict_single,
max_conditions_lengths=max_conditions_lengths_single,
automatic_batching=False,
)
tensors = dataset.fetch_from_idx_list([i for i in range(70)])
assert isinstance(tensors, dict)
assert list(tensors.keys()) == ['data']
assert sorted(list(tensors['data'].keys())) == [
'input', 'target']
assert isinstance(tensors['data']['input'], torch.Tensor)
assert tensors['data']['input'].shape == torch.Size((70, 10))
assert isinstance(tensors['data']['target'], torch.Tensor)
assert tensors['data']['target'].shape == torch.Size((70, 2))
assert list(tensors.keys()) == ["data"]
assert sorted(list(tensors["data"].keys())) == ["input", "target"]
assert isinstance(tensors["data"]["input"], torch.Tensor)
assert tensors["data"]["input"].shape == torch.Size((70, 10))
assert isinstance(tensors["data"]["target"], torch.Tensor)
assert tensors["data"]["target"].shape == torch.Size((70, 2))
def test_getitem_multi():
dataset = PinaDatasetFactory(conditions_dict_single_multi,
max_conditions_lengths=max_conditions_lengths_multi,
automatic_batching=False)
dataset = PinaDatasetFactory(
conditions_dict_single_multi,
max_conditions_lengths=max_conditions_lengths_multi,
automatic_batching=False,
)
tensors = dataset.fetch_from_idx_list([i for i in range(70)])
assert isinstance(tensors, dict)
assert list(tensors.keys()) == ['data_1', 'data_2']
assert sorted(list(tensors['data_1'].keys())) == [
'input', 'target']
assert isinstance(tensors['data_1']['input'], torch.Tensor)
assert tensors['data_1']['input'].shape == torch.Size((70, 10))
assert isinstance(tensors['data_1']['target'], torch.Tensor)
assert tensors['data_1']['target'].shape == torch.Size((70, 2))
assert list(tensors.keys()) == ["data_1", "data_2"]
assert sorted(list(tensors["data_1"].keys())) == ["input", "target"]
assert isinstance(tensors["data_1"]["input"], torch.Tensor)
assert tensors["data_1"]["input"].shape == torch.Size((70, 10))
assert isinstance(tensors["data_1"]["target"], torch.Tensor)
assert tensors["data_1"]["target"].shape == torch.Size((70, 2))
assert sorted(list(tensors['data_2'].keys())) == [
'input', 'target']
assert isinstance(tensors['data_2']['input'], torch.Tensor)
assert tensors['data_2']['input'].shape == torch.Size((50, 10))
assert isinstance(tensors['data_2']['target'], torch.Tensor)
assert tensors['data_2']['target'].shape == torch.Size((50, 2))
assert sorted(list(tensors["data_2"].keys())) == ["input", "target"]
assert isinstance(tensors["data_2"]["input"], torch.Tensor)
assert tensors["data_2"]["input"].shape == torch.Size((50, 10))
assert isinstance(tensors["data_2"]["target"], torch.Tensor)
assert tensors["data_2"]["target"].shape == torch.Size((50, 2))