Fix Codacy Warnings (#477)
--------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
committed by
Nicola Demo
parent
e3790e049a
commit
4177bfbb50
@@ -9,80 +9,78 @@ input_tensor_2 = torch.rand((50, 10))
|
||||
output_tensor_2 = torch.rand((50, 2))
|
||||
|
||||
conditions_dict_single = {
|
||||
'data': {
|
||||
'input': input_tensor,
|
||||
'target': output_tensor,
|
||||
"data": {
|
||||
"input": input_tensor,
|
||||
"target": output_tensor,
|
||||
}
|
||||
}
|
||||
|
||||
conditions_dict_single_multi = {
|
||||
'data_1': {
|
||||
'input': input_tensor,
|
||||
'target': output_tensor,
|
||||
"data_1": {
|
||||
"input": input_tensor,
|
||||
"target": output_tensor,
|
||||
},
|
||||
"data_2": {
|
||||
"input": input_tensor_2,
|
||||
"target": output_tensor_2,
|
||||
},
|
||||
'data_2': {
|
||||
'input': input_tensor_2,
|
||||
'target': output_tensor_2,
|
||||
}
|
||||
}
|
||||
|
||||
max_conditions_lengths_single = {
|
||||
'data': 100
|
||||
}
|
||||
max_conditions_lengths_single = {"data": 100}
|
||||
|
||||
max_conditions_lengths_multi = {
|
||||
'data_1': 100,
|
||||
'data_2': 50
|
||||
}
|
||||
max_conditions_lengths_multi = {"data_1": 100, "data_2": 50}
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"conditions_dict, max_conditions_lengths",
|
||||
[
|
||||
(conditions_dict_single, max_conditions_lengths_single),
|
||||
(conditions_dict_single_multi, max_conditions_lengths_multi)
|
||||
]
|
||||
(conditions_dict_single_multi, max_conditions_lengths_multi),
|
||||
],
|
||||
)
|
||||
def test_constructor_tensor(conditions_dict, max_conditions_lengths):
|
||||
dataset = PinaDatasetFactory(conditions_dict,
|
||||
max_conditions_lengths=max_conditions_lengths,
|
||||
automatic_batching=True)
|
||||
dataset = PinaDatasetFactory(
|
||||
conditions_dict,
|
||||
max_conditions_lengths=max_conditions_lengths,
|
||||
automatic_batching=True,
|
||||
)
|
||||
assert isinstance(dataset, PinaTensorDataset)
|
||||
|
||||
|
||||
def test_getitem_single():
|
||||
dataset = PinaDatasetFactory(conditions_dict_single,
|
||||
max_conditions_lengths=max_conditions_lengths_single,
|
||||
automatic_batching=False)
|
||||
dataset = PinaDatasetFactory(
|
||||
conditions_dict_single,
|
||||
max_conditions_lengths=max_conditions_lengths_single,
|
||||
automatic_batching=False,
|
||||
)
|
||||
|
||||
tensors = dataset.fetch_from_idx_list([i for i in range(70)])
|
||||
assert isinstance(tensors, dict)
|
||||
assert list(tensors.keys()) == ['data']
|
||||
assert sorted(list(tensors['data'].keys())) == [
|
||||
'input', 'target']
|
||||
assert isinstance(tensors['data']['input'], torch.Tensor)
|
||||
assert tensors['data']['input'].shape == torch.Size((70, 10))
|
||||
assert isinstance(tensors['data']['target'], torch.Tensor)
|
||||
assert tensors['data']['target'].shape == torch.Size((70, 2))
|
||||
assert list(tensors.keys()) == ["data"]
|
||||
assert sorted(list(tensors["data"].keys())) == ["input", "target"]
|
||||
assert isinstance(tensors["data"]["input"], torch.Tensor)
|
||||
assert tensors["data"]["input"].shape == torch.Size((70, 10))
|
||||
assert isinstance(tensors["data"]["target"], torch.Tensor)
|
||||
assert tensors["data"]["target"].shape == torch.Size((70, 2))
|
||||
|
||||
|
||||
def test_getitem_multi():
|
||||
dataset = PinaDatasetFactory(conditions_dict_single_multi,
|
||||
max_conditions_lengths=max_conditions_lengths_multi,
|
||||
automatic_batching=False)
|
||||
dataset = PinaDatasetFactory(
|
||||
conditions_dict_single_multi,
|
||||
max_conditions_lengths=max_conditions_lengths_multi,
|
||||
automatic_batching=False,
|
||||
)
|
||||
tensors = dataset.fetch_from_idx_list([i for i in range(70)])
|
||||
assert isinstance(tensors, dict)
|
||||
assert list(tensors.keys()) == ['data_1', 'data_2']
|
||||
assert sorted(list(tensors['data_1'].keys())) == [
|
||||
'input', 'target']
|
||||
assert isinstance(tensors['data_1']['input'], torch.Tensor)
|
||||
assert tensors['data_1']['input'].shape == torch.Size((70, 10))
|
||||
assert isinstance(tensors['data_1']['target'], torch.Tensor)
|
||||
assert tensors['data_1']['target'].shape == torch.Size((70, 2))
|
||||
assert list(tensors.keys()) == ["data_1", "data_2"]
|
||||
assert sorted(list(tensors["data_1"].keys())) == ["input", "target"]
|
||||
assert isinstance(tensors["data_1"]["input"], torch.Tensor)
|
||||
assert tensors["data_1"]["input"].shape == torch.Size((70, 10))
|
||||
assert isinstance(tensors["data_1"]["target"], torch.Tensor)
|
||||
assert tensors["data_1"]["target"].shape == torch.Size((70, 2))
|
||||
|
||||
assert sorted(list(tensors['data_2'].keys())) == [
|
||||
'input', 'target']
|
||||
assert isinstance(tensors['data_2']['input'], torch.Tensor)
|
||||
assert tensors['data_2']['input'].shape == torch.Size((50, 10))
|
||||
assert isinstance(tensors['data_2']['target'], torch.Tensor)
|
||||
assert tensors['data_2']['target'].shape == torch.Size((50, 2))
|
||||
assert sorted(list(tensors["data_2"].keys())) == ["input", "target"]
|
||||
assert isinstance(tensors["data_2"]["input"], torch.Tensor)
|
||||
assert tensors["data_2"]["input"].shape == torch.Size((50, 10))
|
||||
assert isinstance(tensors["data_2"]["target"], torch.Tensor)
|
||||
assert tensors["data_2"]["target"].shape == torch.Size((50, 2))
|
||||
|
||||
Reference in New Issue
Block a user