Fix Codacy Warnings (#477)

---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
Filippo Olivo
2025-03-10 15:38:45 +01:00
committed by Nicola Demo
parent e3790e049a
commit 4177bfbb50
157 changed files with 3473 additions and 3839 deletions

View File

@@ -8,139 +8,166 @@ batch_size = 15
n_layers = 4
embedding_dim = 24
func = torch.nn.Tanh
coordinates_indices = ['p']
field_indices = ['v']
coordinates_indices = ["p"]
field_indices = ["v"]
def test_constructor():
# working constructor
lifting_net = torch.nn.Linear(len(coordinates_indices) + len(field_indices),
embedding_dim)
projecting_net = torch.nn.Linear(embedding_dim + len(field_indices),
len(field_indices))
lifting_net = torch.nn.Linear(
len(coordinates_indices) + len(field_indices), embedding_dim
)
projecting_net = torch.nn.Linear(
embedding_dim + len(field_indices), len(field_indices)
)
AveragingNeuralOperator(
lifting_net=lifting_net,
projecting_net=projecting_net,
coordinates_indices=coordinates_indices,
field_indices=field_indices,
n_layers=n_layers,
func=func)
func=func,
)
# not working constructor
with pytest.raises(ValueError):
AveragingNeuralOperator(
lifting_net=lifting_net,
projecting_net=projecting_net,
coordinates_indices=coordinates_indices,
field_indices=field_indices,
n_layers=3.2, # wrong
func=func)
lifting_net=lifting_net,
projecting_net=projecting_net,
coordinates_indices=coordinates_indices,
field_indices=field_indices,
n_layers=3.2, # wrong
func=func,
)
AveragingNeuralOperator(
lifting_net=lifting_net,
projecting_net=projecting_net,
coordinates_indices=coordinates_indices,
field_indices=field_indices,
n_layers=n_layers,
func=1) # wrong
AveragingNeuralOperator(
lifting_net=[0], # wrong
projecting_net=projecting_net,
coordinates_indices=coordinates_indices,
field_indices=field_indices,
n_layers=n_layers,
func=func)
AveragingNeuralOperator(
lifting_net=lifting_net,
projecting_net=[0], # wront
coordinates_indices=coordinates_indices,
field_indices=field_indices,
n_layers=n_layers,
func=func)
AveragingNeuralOperator(
lifting_net=lifting_net,
projecting_net=projecting_net,
coordinates_indices=[0], #wrong
field_indices=field_indices,
n_layers=n_layers,
func=func)
AveragingNeuralOperator(
lifting_net=lifting_net,
projecting_net=projecting_net,
coordinates_indices=coordinates_indices,
field_indices=[0], #wrong
n_layers=n_layers,
func=func)
lifting_net = torch.nn.Linear(len(coordinates_indices),
embedding_dim)
AveragingNeuralOperator(
lifting_net=lifting_net,
projecting_net=projecting_net,
coordinates_indices=coordinates_indices,
field_indices=field_indices,
n_layers=n_layers,
func=func)
lifting_net = torch.nn.Linear(len(coordinates_indices) + len(field_indices),
embedding_dim)
projecting_net = torch.nn.Linear(embedding_dim,
len(field_indices))
func=1,
) # wrong
AveragingNeuralOperator(
lifting_net=[0], # wrong
projecting_net=projecting_net,
coordinates_indices=coordinates_indices,
field_indices=field_indices,
n_layers=n_layers,
func=func,
)
AveragingNeuralOperator(
lifting_net=lifting_net,
projecting_net=[0], # wront
coordinates_indices=coordinates_indices,
field_indices=field_indices,
n_layers=n_layers,
func=func,
)
AveragingNeuralOperator(
lifting_net=lifting_net,
projecting_net=projecting_net,
coordinates_indices=[0], # wrong
field_indices=field_indices,
n_layers=n_layers,
func=func,
)
AveragingNeuralOperator(
lifting_net=lifting_net,
projecting_net=projecting_net,
coordinates_indices=coordinates_indices,
field_indices=[0], # wrong
n_layers=n_layers,
func=func,
)
lifting_net = torch.nn.Linear(len(coordinates_indices), embedding_dim)
AveragingNeuralOperator(
lifting_net=lifting_net,
projecting_net=projecting_net,
coordinates_indices=coordinates_indices,
field_indices=field_indices,
n_layers=n_layers,
func=func)
func=func,
)
lifting_net = torch.nn.Linear(
len(coordinates_indices) + len(field_indices), embedding_dim
)
projecting_net = torch.nn.Linear(embedding_dim, len(field_indices))
AveragingNeuralOperator(
lifting_net=lifting_net,
projecting_net=projecting_net,
coordinates_indices=coordinates_indices,
field_indices=field_indices,
n_layers=n_layers,
func=func,
)
def test_forward():
lifting_net = torch.nn.Linear(len(coordinates_indices) + len(field_indices),
embedding_dim)
projecting_net = torch.nn.Linear(embedding_dim + len(field_indices),
len(field_indices))
avno=AveragingNeuralOperator(
lifting_net = torch.nn.Linear(
len(coordinates_indices) + len(field_indices), embedding_dim
)
projecting_net = torch.nn.Linear(
embedding_dim + len(field_indices), len(field_indices)
)
avno = AveragingNeuralOperator(
lifting_net=lifting_net,
projecting_net=projecting_net,
coordinates_indices=coordinates_indices,
field_indices=field_indices,
n_layers=n_layers,
func=func)
func=func,
)
input_ = LabelTensor(
torch.rand(batch_size, 100,
len(coordinates_indices) + len(field_indices)), ['p', 'v'])
torch.rand(
batch_size, 100, len(coordinates_indices) + len(field_indices)
),
["p", "v"],
)
out = avno(input_)
assert out.shape == torch.Size(
[batch_size, input_.shape[1], len(field_indices)])
[batch_size, input_.shape[1], len(field_indices)]
)
def test_backward():
lifting_net = torch.nn.Linear(len(coordinates_indices) + len(field_indices),
embedding_dim)
projecting_net = torch.nn.Linear(embedding_dim + len(field_indices),
len(field_indices))
avno=AveragingNeuralOperator(
lifting_net = torch.nn.Linear(
len(coordinates_indices) + len(field_indices), embedding_dim
)
projecting_net = torch.nn.Linear(
embedding_dim + len(field_indices), len(field_indices)
)
avno = AveragingNeuralOperator(
lifting_net=lifting_net,
projecting_net=projecting_net,
coordinates_indices=coordinates_indices,
field_indices=field_indices,
n_layers=n_layers,
func=func)
func=func,
)
input_ = LabelTensor(
torch.rand(batch_size, 100,
len(coordinates_indices) + len(field_indices)), ['p', 'v'])
torch.rand(
batch_size, 100, len(coordinates_indices) + len(field_indices)
),
["p", "v"],
)
input_ = input_.requires_grad_()
out = avno(input_)
tmp = torch.linalg.norm(out)
tmp.backward()
grad = input_.grad
assert grad.shape == torch.Size(
[batch_size, input_.shape[1],
len(coordinates_indices) + len(field_indices)])
[
batch_size,
input_.shape[1],
len(coordinates_indices) + len(field_indices),
]
)