Fix Codacy Warnings (#477)
--------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
committed by
Nicola Demo
parent
e3790e049a
commit
4177bfbb50
@@ -7,42 +7,50 @@ from pina.model import DeepONet
|
||||
from pina.model import FeedForward
|
||||
|
||||
data = torch.rand((20, 3))
|
||||
input_vars = ['a', 'b', 'c']
|
||||
input_vars = ["a", "b", "c"]
|
||||
input_ = LabelTensor(data, input_vars)
|
||||
symbol_funcs_red = DeepONet._symbol_functions(dim=-1)
|
||||
output_dims = [1, 5, 10, 20]
|
||||
|
||||
|
||||
def test_constructor():
|
||||
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
|
||||
DeepONet(branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=['a'],
|
||||
input_indeces_trunk_net=['b', 'c'],
|
||||
reduction='+',
|
||||
aggregator='*')
|
||||
DeepONet(
|
||||
branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=["a"],
|
||||
input_indeces_trunk_net=["b", "c"],
|
||||
reduction="+",
|
||||
aggregator="*",
|
||||
)
|
||||
|
||||
|
||||
def test_constructor_fails_when_invalid_inner_layer_size():
|
||||
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensions=2, output_dimensions=8)
|
||||
with pytest.raises(ValueError):
|
||||
DeepONet(branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=['a'],
|
||||
input_indeces_trunk_net=['b', 'c'],
|
||||
reduction='+',
|
||||
aggregator='*')
|
||||
DeepONet(
|
||||
branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=["a"],
|
||||
input_indeces_trunk_net=["b", "c"],
|
||||
reduction="+",
|
||||
aggregator="*",
|
||||
)
|
||||
|
||||
|
||||
def test_forward_extract_str():
|
||||
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
|
||||
model = DeepONet(branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=['a'],
|
||||
input_indeces_trunk_net=['b', 'c'],
|
||||
reduction='+',
|
||||
aggregator='*')
|
||||
model = DeepONet(
|
||||
branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=["a"],
|
||||
input_indeces_trunk_net=["b", "c"],
|
||||
reduction="+",
|
||||
aggregator="*",
|
||||
)
|
||||
model(input_)
|
||||
assert model(input_).shape[-1] == 1
|
||||
|
||||
@@ -50,82 +58,99 @@ def test_forward_extract_str():
|
||||
def test_forward_extract_int():
|
||||
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
|
||||
model = DeepONet(branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=[0],
|
||||
input_indeces_trunk_net=[1, 2],
|
||||
reduction='+',
|
||||
aggregator='*')
|
||||
model = DeepONet(
|
||||
branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=[0],
|
||||
input_indeces_trunk_net=[1, 2],
|
||||
reduction="+",
|
||||
aggregator="*",
|
||||
)
|
||||
model(data)
|
||||
|
||||
|
||||
def test_backward_extract_int():
|
||||
data = torch.rand((20, 3))
|
||||
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
|
||||
model = DeepONet(branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=[0],
|
||||
input_indeces_trunk_net=[1, 2],
|
||||
reduction='+',
|
||||
aggregator='*')
|
||||
model = DeepONet(
|
||||
branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=[0],
|
||||
input_indeces_trunk_net=[1, 2],
|
||||
reduction="+",
|
||||
aggregator="*",
|
||||
)
|
||||
data.requires_grad = True
|
||||
model(data)
|
||||
l=torch.mean(model(data))
|
||||
l = torch.mean(model(data))
|
||||
l.backward()
|
||||
assert data._grad.shape == torch.Size([20,3])
|
||||
assert data._grad.shape == torch.Size([20, 3])
|
||||
|
||||
|
||||
def test_forward_extract_str_wrong():
|
||||
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
|
||||
model = DeepONet(branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=['a'],
|
||||
input_indeces_trunk_net=['b', 'c'],
|
||||
reduction='+',
|
||||
aggregator='*')
|
||||
model = DeepONet(
|
||||
branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=["a"],
|
||||
input_indeces_trunk_net=["b", "c"],
|
||||
reduction="+",
|
||||
aggregator="*",
|
||||
)
|
||||
with pytest.raises(RuntimeError):
|
||||
model(data)
|
||||
|
||||
|
||||
def test_backward_extract_str_wrong():
|
||||
data = torch.rand((20, 3))
|
||||
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
|
||||
model = DeepONet(branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=['a'],
|
||||
input_indeces_trunk_net=['b', 'c'],
|
||||
reduction='+',
|
||||
aggregator='*')
|
||||
model = DeepONet(
|
||||
branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=["a"],
|
||||
input_indeces_trunk_net=["b", "c"],
|
||||
reduction="+",
|
||||
aggregator="*",
|
||||
)
|
||||
data.requires_grad = True
|
||||
with pytest.raises(RuntimeError):
|
||||
model(data)
|
||||
l=torch.mean(model(data))
|
||||
l = torch.mean(model(data))
|
||||
l.backward()
|
||||
assert data._grad.shape == torch.Size([20,3])
|
||||
assert data._grad.shape == torch.Size([20, 3])
|
||||
|
||||
@pytest.mark.parametrize('red', symbol_funcs_red)
|
||||
|
||||
@pytest.mark.parametrize("red", symbol_funcs_red)
|
||||
def test_forward_symbol_funcs(red):
|
||||
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
|
||||
model = DeepONet(branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=['a'],
|
||||
input_indeces_trunk_net=['b', 'c'],
|
||||
reduction=red,
|
||||
aggregator='*')
|
||||
model = DeepONet(
|
||||
branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=["a"],
|
||||
input_indeces_trunk_net=["b", "c"],
|
||||
reduction=red,
|
||||
aggregator="*",
|
||||
)
|
||||
model(input_)
|
||||
assert model(input_).shape[-1] == 1
|
||||
|
||||
@pytest.mark.parametrize('out_dim', output_dims)
|
||||
|
||||
@pytest.mark.parametrize("out_dim", output_dims)
|
||||
def test_forward_callable_reduction(out_dim):
|
||||
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
|
||||
reduction_layer = Linear(10, out_dim)
|
||||
model = DeepONet(branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=['a'],
|
||||
input_indeces_trunk_net=['b', 'c'],
|
||||
reduction=reduction_layer,
|
||||
aggregator='*')
|
||||
model = DeepONet(
|
||||
branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=["a"],
|
||||
input_indeces_trunk_net=["b", "c"],
|
||||
reduction=reduction_layer,
|
||||
aggregator="*",
|
||||
)
|
||||
model(input_)
|
||||
assert model(input_).shape[-1] == out_dim
|
||||
|
||||
Reference in New Issue
Block a user