Fix Codacy Warnings (#477)

---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
Filippo Olivo
2025-03-10 15:38:45 +01:00
committed by Nicola Demo
parent e3790e049a
commit 4177bfbb50
157 changed files with 3473 additions and 3839 deletions

View File

@@ -6,7 +6,7 @@ from pina.model import MIONet
from pina.model import FeedForward
data = torch.rand((20, 3))
input_vars = ['a', 'b', 'c']
input_vars = ["a", "b", "c"]
input_ = LabelTensor(data, input_vars)
@@ -14,42 +14,42 @@ def test_constructor():
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=2, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: ['x'], branch_net2: ['x', 'y'], trunk_net: ['z']}
MIONet(networks=networks, reduction='+', aggregator='*')
networks = {branch_net1: ["x"], branch_net2: ["x", "y"], trunk_net: ["z"]}
MIONet(networks=networks, reduction="+", aggregator="*")
def test_constructor_fails_when_invalid_inner_layer_size():
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=2, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=12)
networks = {branch_net1: ['x'], branch_net2: ['x', 'y'], trunk_net: ['z']}
networks = {branch_net1: ["x"], branch_net2: ["x", "y"], trunk_net: ["z"]}
with pytest.raises(ValueError):
MIONet(networks=networks, reduction='+', aggregator='*')
MIONet(networks=networks, reduction="+", aggregator="*")
def test_forward_extract_str():
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: ['a'], branch_net2: ['b'], trunk_net: ['c']}
model = MIONet(networks=networks, reduction='+', aggregator='*')
networks = {branch_net1: ["a"], branch_net2: ["b"], trunk_net: ["c"]}
model = MIONet(networks=networks, reduction="+", aggregator="*")
model(input_)
def test_backward_extract_str():
data = torch.rand((20, 3))
data.requires_grad = True
input_vars = ['a', 'b', 'c']
input_vars = ["a", "b", "c"]
input_ = LabelTensor(data, input_vars)
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: ['a'], branch_net2: ['b'], trunk_net: ['c']}
model = MIONet(networks=networks, reduction='+', aggregator='*')
networks = {branch_net1: ["a"], branch_net2: ["b"], trunk_net: ["c"]}
model = MIONet(networks=networks, reduction="+", aggregator="*")
model(input_)
l = torch.mean(model(input_))
l.backward()
assert data._grad.shape == torch.Size([20,3])
assert data._grad.shape == torch.Size([20, 3])
def test_forward_extract_int():
@@ -57,7 +57,7 @@ def test_forward_extract_int():
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: [0], branch_net2: [1], trunk_net: [2]}
model = MIONet(networks=networks, reduction='+', aggregator='*')
model = MIONet(networks=networks, reduction="+", aggregator="*")
model(data)
@@ -68,19 +68,19 @@ def test_backward_extract_int():
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: [0], branch_net2: [1], trunk_net: [2]}
model = MIONet(networks=networks, reduction='+', aggregator='*')
model = MIONet(networks=networks, reduction="+", aggregator="*")
model(data)
l = torch.mean(model(data))
l.backward()
assert data._grad.shape == torch.Size([20,3])
assert data._grad.shape == torch.Size([20, 3])
def test_forward_extract_str_wrong():
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: ['a'], branch_net2: ['b'], trunk_net: ['c']}
model = MIONet(networks=networks, reduction='+', aggregator='*')
networks = {branch_net1: ["a"], branch_net2: ["b"], trunk_net: ["c"]}
model = MIONet(networks=networks, reduction="+", aggregator="*")
with pytest.raises(RuntimeError):
model(data)
@@ -91,10 +91,10 @@ def test_backward_extract_str_wrong():
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: ['a'], branch_net2: ['b'], trunk_net: ['c']}
model = MIONet(networks=networks, reduction='+', aggregator='*')
networks = {branch_net1: ["a"], branch_net2: ["b"], trunk_net: ["c"]}
model = MIONet(networks=networks, reduction="+", aggregator="*")
with pytest.raises(RuntimeError):
model(data)
l = torch.mean(model(data))
l.backward()
assert data._grad.shape == torch.Size([20,3])
assert data._grad.shape == torch.Size([20, 3])