Fix Codacy Warnings (#477)
--------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
committed by
Nicola Demo
parent
e3790e049a
commit
4177bfbb50
@@ -6,7 +6,7 @@ from pina.model import MIONet
|
||||
from pina.model import FeedForward
|
||||
|
||||
data = torch.rand((20, 3))
|
||||
input_vars = ['a', 'b', 'c']
|
||||
input_vars = ["a", "b", "c"]
|
||||
input_ = LabelTensor(data, input_vars)
|
||||
|
||||
|
||||
@@ -14,42 +14,42 @@ def test_constructor():
|
||||
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
branch_net2 = FeedForward(input_dimensions=2, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
networks = {branch_net1: ['x'], branch_net2: ['x', 'y'], trunk_net: ['z']}
|
||||
MIONet(networks=networks, reduction='+', aggregator='*')
|
||||
networks = {branch_net1: ["x"], branch_net2: ["x", "y"], trunk_net: ["z"]}
|
||||
MIONet(networks=networks, reduction="+", aggregator="*")
|
||||
|
||||
|
||||
def test_constructor_fails_when_invalid_inner_layer_size():
|
||||
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
branch_net2 = FeedForward(input_dimensions=2, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensions=1, output_dimensions=12)
|
||||
networks = {branch_net1: ['x'], branch_net2: ['x', 'y'], trunk_net: ['z']}
|
||||
networks = {branch_net1: ["x"], branch_net2: ["x", "y"], trunk_net: ["z"]}
|
||||
with pytest.raises(ValueError):
|
||||
MIONet(networks=networks, reduction='+', aggregator='*')
|
||||
MIONet(networks=networks, reduction="+", aggregator="*")
|
||||
|
||||
|
||||
def test_forward_extract_str():
|
||||
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
networks = {branch_net1: ['a'], branch_net2: ['b'], trunk_net: ['c']}
|
||||
model = MIONet(networks=networks, reduction='+', aggregator='*')
|
||||
networks = {branch_net1: ["a"], branch_net2: ["b"], trunk_net: ["c"]}
|
||||
model = MIONet(networks=networks, reduction="+", aggregator="*")
|
||||
model(input_)
|
||||
|
||||
|
||||
def test_backward_extract_str():
|
||||
data = torch.rand((20, 3))
|
||||
data.requires_grad = True
|
||||
input_vars = ['a', 'b', 'c']
|
||||
input_vars = ["a", "b", "c"]
|
||||
input_ = LabelTensor(data, input_vars)
|
||||
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
networks = {branch_net1: ['a'], branch_net2: ['b'], trunk_net: ['c']}
|
||||
model = MIONet(networks=networks, reduction='+', aggregator='*')
|
||||
networks = {branch_net1: ["a"], branch_net2: ["b"], trunk_net: ["c"]}
|
||||
model = MIONet(networks=networks, reduction="+", aggregator="*")
|
||||
model(input_)
|
||||
l = torch.mean(model(input_))
|
||||
l.backward()
|
||||
assert data._grad.shape == torch.Size([20,3])
|
||||
assert data._grad.shape == torch.Size([20, 3])
|
||||
|
||||
|
||||
def test_forward_extract_int():
|
||||
@@ -57,7 +57,7 @@ def test_forward_extract_int():
|
||||
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
networks = {branch_net1: [0], branch_net2: [1], trunk_net: [2]}
|
||||
model = MIONet(networks=networks, reduction='+', aggregator='*')
|
||||
model = MIONet(networks=networks, reduction="+", aggregator="*")
|
||||
model(data)
|
||||
|
||||
|
||||
@@ -68,19 +68,19 @@ def test_backward_extract_int():
|
||||
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
networks = {branch_net1: [0], branch_net2: [1], trunk_net: [2]}
|
||||
model = MIONet(networks=networks, reduction='+', aggregator='*')
|
||||
model = MIONet(networks=networks, reduction="+", aggregator="*")
|
||||
model(data)
|
||||
l = torch.mean(model(data))
|
||||
l.backward()
|
||||
assert data._grad.shape == torch.Size([20,3])
|
||||
assert data._grad.shape == torch.Size([20, 3])
|
||||
|
||||
|
||||
def test_forward_extract_str_wrong():
|
||||
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
networks = {branch_net1: ['a'], branch_net2: ['b'], trunk_net: ['c']}
|
||||
model = MIONet(networks=networks, reduction='+', aggregator='*')
|
||||
networks = {branch_net1: ["a"], branch_net2: ["b"], trunk_net: ["c"]}
|
||||
model = MIONet(networks=networks, reduction="+", aggregator="*")
|
||||
with pytest.raises(RuntimeError):
|
||||
model(data)
|
||||
|
||||
@@ -91,10 +91,10 @@ def test_backward_extract_str_wrong():
|
||||
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
networks = {branch_net1: ['a'], branch_net2: ['b'], trunk_net: ['c']}
|
||||
model = MIONet(networks=networks, reduction='+', aggregator='*')
|
||||
networks = {branch_net1: ["a"], branch_net2: ["b"], trunk_net: ["c"]}
|
||||
model = MIONet(networks=networks, reduction="+", aggregator="*")
|
||||
with pytest.raises(RuntimeError):
|
||||
model(data)
|
||||
l = torch.mean(model(data))
|
||||
l.backward()
|
||||
assert data._grad.shape == torch.Size([20,3])
|
||||
assert data._grad.shape == torch.Size([20, 3])
|
||||
|
||||
Reference in New Issue
Block a user