Fix Codacy Warnings (#477)

---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
Filippo Olivo
2025-03-10 15:38:45 +01:00
committed by Nicola Demo
parent e3790e049a
commit 4177bfbb50
157 changed files with 3473 additions and 3839 deletions

View File

@@ -12,53 +12,62 @@ from torch._dynamo.eval_frame import OptimizedModule
class TensorProblem(AbstractProblem):
input_variables = ['u_0', 'u_1']
output_variables = ['u']
input_variables = ["u_0", "u_1"]
output_variables = ["u"]
conditions = {
'data': Condition(
target=torch.randn(50, 2),
input=torch.randn(50, 1))
"data": Condition(target=torch.randn(50, 2), input=torch.randn(50, 1))
}
# simple Generator Network
class Generator(nn.Module):
def __init__(self,
input_dimension=2,
parameters_dimension=1,
noise_dimension=2,
activation=torch.nn.SiLU):
def __init__(
self,
input_dimension=2,
parameters_dimension=1,
noise_dimension=2,
activation=torch.nn.SiLU,
):
super().__init__()
self._noise_dimension = noise_dimension
self._activation = activation
self.model = FeedForward(6*noise_dimension, input_dimension)
self.model = FeedForward(6 * noise_dimension, input_dimension)
self.condition = FeedForward(parameters_dimension, 5 * noise_dimension)
def forward(self, param):
# uniform sampling in [-1, 1]
z = 2 * torch.rand(size=(param.shape[0], self._noise_dimension),
device=param.device,
dtype=param.dtype,
requires_grad=True) - 1
z = (
2
* torch.rand(
size=(param.shape[0], self._noise_dimension),
device=param.device,
dtype=param.dtype,
requires_grad=True,
)
- 1
)
return self.model(torch.cat((z, self.condition(param)), dim=-1))
# Simple Discriminator Network
class Discriminator(nn.Module):
def __init__(self,
input_dimension=2,
parameter_dimension=1,
hidden_dimension=2,
activation=torch.nn.ReLU):
def __init__(
self,
input_dimension=2,
parameter_dimension=1,
hidden_dimension=2,
activation=torch.nn.ReLU,
):
super().__init__()
self._activation = activation
self.encoding = FeedForward(input_dimension, hidden_dimension)
self.decoding = FeedForward(2*hidden_dimension, input_dimension)
self.decoding = FeedForward(2 * hidden_dimension, input_dimension)
self.condition = FeedForward(parameter_dimension, hidden_dimension)
def forward(self, data):
@@ -70,103 +79,124 @@ class Discriminator(nn.Module):
def test_constructor():
GAROM(problem=TensorProblem(),
generator=Generator(),
discriminator=Discriminator())
assert GAROM.accepted_conditions_types == (
InputTargetCondition
GAROM(
problem=TensorProblem(),
generator=Generator(),
discriminator=Discriminator(),
)
assert GAROM.accepted_conditions_types == (InputTargetCondition)
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_train(batch_size, compile):
solver = GAROM(problem=TensorProblem(),
generator=Generator(),
discriminator=Discriminator())
trainer = Trainer(solver=solver,
max_epochs=2,
accelerator='cpu',
batch_size=batch_size,
train_size=1.,
test_size=0.,
val_size=0.,
compile=compile)
solver = GAROM(
problem=TensorProblem(),
generator=Generator(),
discriminator=Discriminator(),
)
trainer = Trainer(
solver=solver,
max_epochs=2,
accelerator="cpu",
batch_size=batch_size,
train_size=1.0,
test_size=0.0,
val_size=0.0,
compile=compile,
)
trainer.train()
if trainer.compile:
assert (all([isinstance(model, OptimizedModule)
for model in solver.models]))
assert all(
[isinstance(model, OptimizedModule) for model in solver.models]
)
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_validation(batch_size, compile):
solver = GAROM(problem=TensorProblem(),
generator=Generator(),
discriminator=Discriminator())
solver = GAROM(
problem=TensorProblem(),
generator=Generator(),
discriminator=Discriminator(),
)
trainer = Trainer(solver=solver,
max_epochs=2,
accelerator='cpu',
batch_size=batch_size,
train_size=0.9,
val_size=0.1,
test_size=0.,
compile=compile)
trainer = Trainer(
solver=solver,
max_epochs=2,
accelerator="cpu",
batch_size=batch_size,
train_size=0.9,
val_size=0.1,
test_size=0.0,
compile=compile,
)
trainer.train()
if trainer.compile:
assert (all([isinstance(model, OptimizedModule)
for model in solver.models]))
assert all(
[isinstance(model, OptimizedModule) for model in solver.models]
)
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_test(batch_size, compile):
solver = GAROM(problem=TensorProblem(),
generator=Generator(),
discriminator=Discriminator(),
)
trainer = Trainer(solver=solver,
max_epochs=2,
accelerator='cpu',
batch_size=batch_size,
train_size=0.8,
val_size=0.1,
test_size=0.1,
compile=compile)
solver = GAROM(
problem=TensorProblem(),
generator=Generator(),
discriminator=Discriminator(),
)
trainer = Trainer(
solver=solver,
max_epochs=2,
accelerator="cpu",
batch_size=batch_size,
train_size=0.8,
val_size=0.1,
test_size=0.1,
compile=compile,
)
trainer.test()
if trainer.compile:
assert (all([isinstance(model, OptimizedModule)
for model in solver.models]))
assert all(
[isinstance(model, OptimizedModule) for model in solver.models]
)
def test_train_load_restore():
dir = "tests/test_solver/tmp/"
problem = TensorProblem()
solver = GAROM(problem=TensorProblem(),
generator=Generator(),
discriminator=Discriminator(),
)
trainer = Trainer(solver=solver,
max_epochs=5,
accelerator='cpu',
batch_size=None,
train_size=0.9,
test_size=0.1,
val_size=0.,
default_root_dir=dir)
solver = GAROM(
problem=TensorProblem(),
generator=Generator(),
discriminator=Discriminator(),
)
trainer = Trainer(
solver=solver,
max_epochs=5,
accelerator="cpu",
batch_size=None,
train_size=0.9,
test_size=0.1,
val_size=0.0,
default_root_dir=dir,
)
trainer.train()
# restore
new_trainer = Trainer(solver=solver, max_epochs=5, accelerator='cpu')
new_trainer = Trainer(solver=solver, max_epochs=5, accelerator="cpu")
new_trainer.train(
ckpt_path=f'{dir}/lightning_logs/version_0/checkpoints/' +
'epoch=4-step=5.ckpt')
ckpt_path=f"{dir}/lightning_logs/version_0/checkpoints/"
+ "epoch=4-step=5.ckpt"
)
# loading
new_solver = GAROM.load_from_checkpoint(
f'{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt',
problem=TensorProblem(), generator=Generator(), discriminator=Discriminator())
f"{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt",
problem=TensorProblem(),
generator=Generator(),
discriminator=Discriminator(),
)
test_pts = torch.rand(20, 1)
assert new_solver.forward(test_pts).shape == (20, 2)
@@ -174,4 +204,5 @@ def test_train_load_restore():
# rm directories
import shutil
shutil.rmtree('tests/test_solver/tmp')
shutil.rmtree("tests/test_solver/tmp")