Fix Codacy Warnings (#477)
--------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
committed by
Nicola Demo
parent
e3790e049a
commit
4177bfbb50
@@ -12,22 +12,21 @@ from torch._dynamo.eval_frame import OptimizedModule
|
||||
|
||||
|
||||
class LabelTensorProblem(AbstractProblem):
|
||||
input_variables = ['u_0', 'u_1']
|
||||
output_variables = ['u']
|
||||
input_variables = ["u_0", "u_1"]
|
||||
output_variables = ["u"]
|
||||
conditions = {
|
||||
'data': Condition(
|
||||
input=LabelTensor(torch.randn(20, 2), ['u_0', 'u_1']),
|
||||
target=LabelTensor(torch.randn(20, 1), ['u'])),
|
||||
"data": Condition(
|
||||
input=LabelTensor(torch.randn(20, 2), ["u_0", "u_1"]),
|
||||
target=LabelTensor(torch.randn(20, 1), ["u"]),
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
class TensorProblem(AbstractProblem):
|
||||
input_variables = ['u_0', 'u_1']
|
||||
output_variables = ['u']
|
||||
input_variables = ["u_0", "u_1"]
|
||||
output_variables = ["u"]
|
||||
conditions = {
|
||||
'data': Condition(
|
||||
input=torch.randn(20, 2),
|
||||
target=torch.randn(20, 1))
|
||||
"data": Condition(input=torch.randn(20, 2), target=torch.randn(20, 1))
|
||||
}
|
||||
|
||||
|
||||
@@ -35,23 +34,27 @@ class AE(torch.nn.Module):
|
||||
def __init__(self, input_dimensions, rank):
|
||||
super().__init__()
|
||||
self.encode = FeedForward(
|
||||
input_dimensions, rank, layers=[input_dimensions//4])
|
||||
input_dimensions, rank, layers=[input_dimensions // 4]
|
||||
)
|
||||
self.decode = FeedForward(
|
||||
rank, input_dimensions, layers=[input_dimensions//4])
|
||||
rank, input_dimensions, layers=[input_dimensions // 4]
|
||||
)
|
||||
|
||||
|
||||
class AE_missing_encode(torch.nn.Module):
|
||||
def __init__(self, input_dimensions, rank):
|
||||
super().__init__()
|
||||
self.encode = FeedForward(
|
||||
input_dimensions, rank, layers=[input_dimensions//4])
|
||||
input_dimensions, rank, layers=[input_dimensions // 4]
|
||||
)
|
||||
|
||||
|
||||
class AE_missing_decode(torch.nn.Module):
|
||||
def __init__(self, input_dimensions, rank):
|
||||
super().__init__()
|
||||
self.decode = FeedForward(
|
||||
rank, input_dimensions, layers=[input_dimensions//4])
|
||||
rank, input_dimensions, layers=[input_dimensions // 4]
|
||||
)
|
||||
|
||||
|
||||
rank = 10
|
||||
@@ -62,26 +65,41 @@ reduction_net = AE(1, rank)
|
||||
|
||||
def test_constructor():
|
||||
problem = TensorProblem()
|
||||
ReducedOrderModelSolver(problem=problem,
|
||||
interpolation_network=interpolation_net,
|
||||
reduction_network=reduction_net)
|
||||
ReducedOrderModelSolver(problem=LabelTensorProblem(),
|
||||
reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net)
|
||||
assert ReducedOrderModelSolver.accepted_conditions_types == InputTargetCondition
|
||||
ReducedOrderModelSolver(
|
||||
problem=problem,
|
||||
interpolation_network=interpolation_net,
|
||||
reduction_network=reduction_net,
|
||||
)
|
||||
ReducedOrderModelSolver(
|
||||
problem=LabelTensorProblem(),
|
||||
reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net,
|
||||
)
|
||||
assert (
|
||||
ReducedOrderModelSolver.accepted_conditions_types
|
||||
== InputTargetCondition
|
||||
)
|
||||
with pytest.raises(SyntaxError):
|
||||
ReducedOrderModelSolver(problem=problem,
|
||||
reduction_network=AE_missing_encode(
|
||||
len(problem.output_variables), rank),
|
||||
interpolation_network=interpolation_net)
|
||||
ReducedOrderModelSolver(problem=problem,
|
||||
reduction_network=AE_missing_decode(
|
||||
len(problem.output_variables), rank),
|
||||
interpolation_network=interpolation_net)
|
||||
ReducedOrderModelSolver(
|
||||
problem=problem,
|
||||
reduction_network=AE_missing_encode(
|
||||
len(problem.output_variables), rank
|
||||
),
|
||||
interpolation_network=interpolation_net,
|
||||
)
|
||||
ReducedOrderModelSolver(
|
||||
problem=problem,
|
||||
reduction_network=AE_missing_decode(
|
||||
len(problem.output_variables), rank
|
||||
),
|
||||
interpolation_network=interpolation_net,
|
||||
)
|
||||
with pytest.raises(ValueError):
|
||||
ReducedOrderModelSolver(problem=Poisson2DSquareProblem(),
|
||||
reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net)
|
||||
ReducedOrderModelSolver(
|
||||
problem=Poisson2DSquareProblem(),
|
||||
reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
|
||||
@@ -89,99 +107,122 @@ def test_constructor():
|
||||
@pytest.mark.parametrize("compile", [True, False])
|
||||
def test_solver_train(use_lt, batch_size, compile):
|
||||
problem = LabelTensorProblem() if use_lt else TensorProblem()
|
||||
solver = ReducedOrderModelSolver(problem=problem,
|
||||
reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net, use_lt=use_lt)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator='cpu',
|
||||
batch_size=batch_size,
|
||||
train_size=1.,
|
||||
test_size=0.,
|
||||
val_size=0.,
|
||||
compile=compile)
|
||||
solver = ReducedOrderModelSolver(
|
||||
problem=problem,
|
||||
reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net,
|
||||
use_lt=use_lt,
|
||||
)
|
||||
trainer = Trainer(
|
||||
solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator="cpu",
|
||||
batch_size=batch_size,
|
||||
train_size=1.0,
|
||||
test_size=0.0,
|
||||
val_size=0.0,
|
||||
compile=compile,
|
||||
)
|
||||
trainer.train()
|
||||
if trainer.compile:
|
||||
for v in solver.model.values():
|
||||
assert (isinstance(v, OptimizedModule))
|
||||
assert isinstance(v, OptimizedModule)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("use_lt", [True, False])
|
||||
@pytest.mark.parametrize("compile", [True, False])
|
||||
def test_solver_validation(use_lt, compile):
|
||||
problem = LabelTensorProblem() if use_lt else TensorProblem()
|
||||
solver = ReducedOrderModelSolver(problem=problem,
|
||||
reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net, use_lt=use_lt)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator='cpu',
|
||||
batch_size=None,
|
||||
train_size=0.9,
|
||||
val_size=0.1,
|
||||
test_size=0.,
|
||||
compile=compile)
|
||||
solver = ReducedOrderModelSolver(
|
||||
problem=problem,
|
||||
reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net,
|
||||
use_lt=use_lt,
|
||||
)
|
||||
trainer = Trainer(
|
||||
solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator="cpu",
|
||||
batch_size=None,
|
||||
train_size=0.9,
|
||||
val_size=0.1,
|
||||
test_size=0.0,
|
||||
compile=compile,
|
||||
)
|
||||
trainer.train()
|
||||
if trainer.compile:
|
||||
for v in solver.model.values():
|
||||
assert (isinstance(v, OptimizedModule))
|
||||
assert isinstance(v, OptimizedModule)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("use_lt", [True, False])
|
||||
@pytest.mark.parametrize("compile", [True, False])
|
||||
def test_solver_test(use_lt, compile):
|
||||
problem = LabelTensorProblem() if use_lt else TensorProblem()
|
||||
solver = ReducedOrderModelSolver(problem=problem,
|
||||
reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net, use_lt=use_lt)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator='cpu',
|
||||
batch_size=None,
|
||||
train_size=0.8,
|
||||
val_size=0.1,
|
||||
test_size=0.1,
|
||||
compile=compile)
|
||||
solver = ReducedOrderModelSolver(
|
||||
problem=problem,
|
||||
reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net,
|
||||
use_lt=use_lt,
|
||||
)
|
||||
trainer = Trainer(
|
||||
solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator="cpu",
|
||||
batch_size=None,
|
||||
train_size=0.8,
|
||||
val_size=0.1,
|
||||
test_size=0.1,
|
||||
compile=compile,
|
||||
)
|
||||
trainer.train()
|
||||
if trainer.compile:
|
||||
for v in solver.model.values():
|
||||
assert (isinstance(v, OptimizedModule))
|
||||
assert isinstance(v, OptimizedModule)
|
||||
|
||||
|
||||
def test_train_load_restore():
|
||||
dir = "tests/test_solver/tmp/"
|
||||
problem = LabelTensorProblem()
|
||||
solver = ReducedOrderModelSolver(problem=problem,
|
||||
|
||||
reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=5,
|
||||
accelerator='cpu',
|
||||
batch_size=None,
|
||||
train_size=0.9,
|
||||
test_size=0.1,
|
||||
val_size=0.,
|
||||
default_root_dir=dir)
|
||||
trainer.train()
|
||||
# restore
|
||||
ntrainer = Trainer(solver=solver,
|
||||
max_epochs=5,
|
||||
accelerator='cpu',)
|
||||
ntrainer.train(
|
||||
ckpt_path=f'{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt')
|
||||
# loading
|
||||
new_solver = ReducedOrderModelSolver.load_from_checkpoint(
|
||||
f'{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt',
|
||||
solver = ReducedOrderModelSolver(
|
||||
problem=problem,
|
||||
reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net)
|
||||
interpolation_network=interpolation_net,
|
||||
)
|
||||
trainer = Trainer(
|
||||
solver=solver,
|
||||
max_epochs=5,
|
||||
accelerator="cpu",
|
||||
batch_size=None,
|
||||
train_size=0.9,
|
||||
test_size=0.1,
|
||||
val_size=0.0,
|
||||
default_root_dir=dir,
|
||||
)
|
||||
trainer.train()
|
||||
# restore
|
||||
ntrainer = Trainer(
|
||||
solver=solver,
|
||||
max_epochs=5,
|
||||
accelerator="cpu",
|
||||
)
|
||||
ntrainer.train(
|
||||
ckpt_path=f"{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt"
|
||||
)
|
||||
# loading
|
||||
new_solver = ReducedOrderModelSolver.load_from_checkpoint(
|
||||
f"{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt",
|
||||
problem=problem,
|
||||
reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net,
|
||||
)
|
||||
test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables)
|
||||
assert new_solver.forward(test_pts).shape == (20, 1)
|
||||
assert new_solver.forward(test_pts).shape == solver.forward(test_pts).shape
|
||||
torch.testing.assert_close(
|
||||
new_solver.forward(test_pts),
|
||||
solver.forward(test_pts))
|
||||
new_solver.forward(test_pts), solver.forward(test_pts)
|
||||
)
|
||||
# rm directories
|
||||
import shutil
|
||||
shutil.rmtree('tests/test_solver/tmp')
|
||||
|
||||
shutil.rmtree("tests/test_solver/tmp")
|
||||
|
||||
Reference in New Issue
Block a user