Fix Codacy Warnings (#477)
--------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
committed by
Nicola Demo
parent
e3790e049a
commit
4177bfbb50
@@ -7,12 +7,12 @@ from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.problem.zoo import (
|
||||
Poisson2DSquareProblem as Poisson,
|
||||
InversePoisson2DSquareProblem as InversePoisson
|
||||
InversePoisson2DSquareProblem as InversePoisson,
|
||||
)
|
||||
from pina.condition import (
|
||||
InputTargetCondition,
|
||||
InputEquationCondition,
|
||||
DomainEquationCondition
|
||||
DomainEquationCondition,
|
||||
)
|
||||
from torch._dynamo.eval_frame import OptimizedModule
|
||||
|
||||
@@ -22,20 +22,14 @@ problem = Poisson()
|
||||
problem.discretise_domain(50)
|
||||
inverse_problem = InversePoisson()
|
||||
inverse_problem.discretise_domain(50)
|
||||
model = FeedForward(
|
||||
len(problem.input_variables),
|
||||
len(problem.output_variables)
|
||||
)
|
||||
model = FeedForward(len(problem.input_variables), len(problem.output_variables))
|
||||
|
||||
# add input-output condition to test supervised learning
|
||||
input_pts = torch.rand(50, len(problem.input_variables))
|
||||
input_pts = LabelTensor(input_pts, problem.input_variables)
|
||||
output_pts = torch.rand(50, len(problem.output_variables))
|
||||
output_pts = LabelTensor(output_pts, problem.output_variables)
|
||||
problem.conditions['data'] = Condition(
|
||||
input=input_pts,
|
||||
target=output_pts
|
||||
)
|
||||
problem.conditions["data"] = Condition(input=input_pts, target=output_pts)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
||||
@@ -48,7 +42,7 @@ def test_constructor(problem, weight_fn):
|
||||
assert solver.accepted_conditions_types == (
|
||||
InputTargetCondition,
|
||||
InputEquationCondition,
|
||||
DomainEquationCondition
|
||||
DomainEquationCondition,
|
||||
)
|
||||
|
||||
|
||||
@@ -56,13 +50,15 @@ def test_constructor(problem, weight_fn):
|
||||
def test_wrong_batch(problem):
|
||||
with pytest.raises(NotImplementedError):
|
||||
solver = SAPINN(model=model, problem=problem)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator='cpu',
|
||||
batch_size=10,
|
||||
train_size=1.,
|
||||
val_size=0.,
|
||||
test_size=0.)
|
||||
trainer = Trainer(
|
||||
solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator="cpu",
|
||||
batch_size=10,
|
||||
train_size=1.0,
|
||||
val_size=0.0,
|
||||
test_size=0.0,
|
||||
)
|
||||
trainer.train()
|
||||
|
||||
|
||||
@@ -70,54 +66,72 @@ def test_wrong_batch(problem):
|
||||
@pytest.mark.parametrize("compile", [True, False])
|
||||
def test_solver_train(problem, compile):
|
||||
solver = SAPINN(model=model, problem=problem)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator='cpu',
|
||||
batch_size=None,
|
||||
train_size=1.,
|
||||
val_size=0.,
|
||||
test_size=0.,
|
||||
compile=compile)
|
||||
trainer = Trainer(
|
||||
solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator="cpu",
|
||||
batch_size=None,
|
||||
train_size=1.0,
|
||||
val_size=0.0,
|
||||
test_size=0.0,
|
||||
compile=compile,
|
||||
)
|
||||
trainer.train()
|
||||
if trainer.compile:
|
||||
assert (all([isinstance(model, (OptimizedModule, torch.nn.ModuleDict))
|
||||
for model in solver.models]))
|
||||
assert all(
|
||||
[
|
||||
isinstance(model, (OptimizedModule, torch.nn.ModuleDict))
|
||||
for model in solver.models
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
||||
@pytest.mark.parametrize("compile", [True, False])
|
||||
def test_solver_validation(problem, compile):
|
||||
solver = SAPINN(model=model, problem=problem)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator='cpu',
|
||||
batch_size=None,
|
||||
train_size=0.9,
|
||||
val_size=0.1,
|
||||
test_size=0.,
|
||||
compile=compile)
|
||||
trainer = Trainer(
|
||||
solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator="cpu",
|
||||
batch_size=None,
|
||||
train_size=0.9,
|
||||
val_size=0.1,
|
||||
test_size=0.0,
|
||||
compile=compile,
|
||||
)
|
||||
trainer.train()
|
||||
if trainer.compile:
|
||||
assert (all([isinstance(model, (OptimizedModule, torch.nn.ModuleDict))
|
||||
for model in solver.models]))
|
||||
assert all(
|
||||
[
|
||||
isinstance(model, (OptimizedModule, torch.nn.ModuleDict))
|
||||
for model in solver.models
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
||||
@pytest.mark.parametrize("compile", [True, False])
|
||||
def test_solver_test(problem, compile):
|
||||
solver = SAPINN(model=model, problem=problem)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator='cpu',
|
||||
batch_size=None,
|
||||
train_size=0.7,
|
||||
val_size=0.2,
|
||||
test_size=0.1,
|
||||
compile=compile)
|
||||
trainer = Trainer(
|
||||
solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator="cpu",
|
||||
batch_size=None,
|
||||
train_size=0.7,
|
||||
val_size=0.2,
|
||||
test_size=0.1,
|
||||
compile=compile,
|
||||
)
|
||||
trainer.test()
|
||||
if trainer.compile:
|
||||
assert (all([isinstance(model, (OptimizedModule, torch.nn.ModuleDict))
|
||||
for model in solver.models]))
|
||||
assert all(
|
||||
[
|
||||
isinstance(model, (OptimizedModule, torch.nn.ModuleDict))
|
||||
for model in solver.models
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
||||
@@ -125,25 +139,30 @@ def test_train_load_restore(problem):
|
||||
dir = "tests/test_solver/tmp"
|
||||
problem = problem
|
||||
solver = SAPINN(model=model, problem=problem)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=5,
|
||||
accelerator='cpu',
|
||||
batch_size=None,
|
||||
train_size=0.7,
|
||||
val_size=0.2,
|
||||
test_size=0.1,
|
||||
default_root_dir=dir)
|
||||
trainer = Trainer(
|
||||
solver=solver,
|
||||
max_epochs=5,
|
||||
accelerator="cpu",
|
||||
batch_size=None,
|
||||
train_size=0.7,
|
||||
val_size=0.2,
|
||||
test_size=0.1,
|
||||
default_root_dir=dir,
|
||||
)
|
||||
trainer.train()
|
||||
# restore
|
||||
new_trainer = Trainer(solver=solver, max_epochs=5, accelerator='cpu')
|
||||
new_trainer = Trainer(solver=solver, max_epochs=5, accelerator="cpu")
|
||||
new_trainer.train(
|
||||
ckpt_path=f'{dir}/lightning_logs/version_0/checkpoints/' +
|
||||
'epoch=4-step=5.ckpt')
|
||||
ckpt_path=f"{dir}/lightning_logs/version_0/checkpoints/"
|
||||
+ "epoch=4-step=5.ckpt"
|
||||
)
|
||||
|
||||
# loading
|
||||
new_solver = SAPINN.load_from_checkpoint(
|
||||
f'{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt',
|
||||
problem=problem, model=model)
|
||||
f"{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt",
|
||||
problem=problem,
|
||||
model=model,
|
||||
)
|
||||
|
||||
test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables)
|
||||
assert new_solver.forward(test_pts).shape == (20, 1)
|
||||
@@ -151,9 +170,10 @@ def test_train_load_restore(problem):
|
||||
solver.forward(test_pts).shape
|
||||
)
|
||||
torch.testing.assert_close(
|
||||
new_solver.forward(test_pts),
|
||||
solver.forward(test_pts))
|
||||
new_solver.forward(test_pts), solver.forward(test_pts)
|
||||
)
|
||||
|
||||
# rm directories
|
||||
import shutil
|
||||
shutil.rmtree('tests/test_solver/tmp')
|
||||
|
||||
shutil.rmtree("tests/test_solver/tmp")
|
||||
|
||||
Reference in New Issue
Block a user