Formatting

* Adding black as dev dependency
* Formatting pina code
* Formatting tests
This commit is contained in:
Dario Coscia
2025-02-24 11:26:49 +01:00
committed by Nicola Demo
parent 4c4482b155
commit 42ab1a666b
77 changed files with 1170 additions and 924 deletions

View File

@@ -1,12 +1,9 @@
"""
Import data classes
"""
__all__ = [
'PinaDataModule',
'PinaDataset'
]
__all__ = ["PinaDataModule", "PinaDataset"]
from .data_module import PinaDataModule
from .dataset import PinaDataset
from .dataset import PinaDataset

View File

@@ -11,7 +11,7 @@ from ..collector import Collector
class DummyDataloader:
""""
""" "
Dummy dataloader used when batch size is None. It callects all the data
in self.dataset and returns it when it is called a single batch.
"""
@@ -28,14 +28,17 @@ class DummyDataloader:
- **Non-Distributed Environment**:
- Fetches the entire dataset.
"""
if (torch.distributed.is_available() and
torch.distributed.is_initialized()):
if (
torch.distributed.is_available()
and torch.distributed.is_initialized()
):
rank = torch.distributed.get_rank()
world_size = torch.distributed.get_world_size()
if len(dataset) < world_size:
raise RuntimeError(
"Dimension of the dataset smaller than world size."
" Increase the size of the partition or use a single GPU")
" Increase the size of the partition or use a single GPU"
)
idx, i = [], rank
while i < len(dataset):
idx.append(i)
@@ -57,9 +60,11 @@ class DummyDataloader:
class Collator:
def __init__(self, max_conditions_lengths, dataset=None):
self.max_conditions_lengths = max_conditions_lengths
self.callable_function = self._collate_custom_dataloader if \
max_conditions_lengths is None else (
self._collate_standard_dataloader)
self.callable_function = (
self._collate_custom_dataloader
if max_conditions_lengths is None
else (self._collate_standard_dataloader)
)
self.dataset = dataset
if isinstance(self.dataset, PinaTensorDataset):
self._collate = self._collate_tensor_dataset
@@ -82,9 +87,15 @@ class Collator:
single_cond_dict = {}
condition_args = batch[0][condition_name].keys()
for arg in condition_args:
data_list = [batch[idx][condition_name][arg] for idx in range(
min(len(batch),
self.max_conditions_lengths[condition_name]))]
data_list = [
batch[idx][condition_name][arg]
for idx in range(
min(
len(batch),
self.max_conditions_lengths[condition_name],
)
)
]
single_cond_dict[arg] = self._collate(data_list)
batch_dict[condition_name] = single_cond_dict
@@ -114,8 +125,10 @@ class Collator:
class PinaSampler:
def __new__(cls, dataset, shuffle):
if (torch.distributed.is_available() and
torch.distributed.is_initialized()):
if (
torch.distributed.is_available()
and torch.distributed.is_initialized()
):
sampler = DistributedSampler(dataset, shuffle=shuffle)
else:
if shuffle:
@@ -131,19 +144,20 @@ class PinaDataModule(LightningDataModule):
management of different types of Datasets defined in PINA
"""
def __init__(self,
problem,
train_size=.7,
test_size=.2,
val_size=.1,
predict_size=0.,
batch_size=None,
shuffle=True,
repeat=False,
automatic_batching=None,
num_workers=0,
pin_memory=False,
):
def __init__(
self,
problem,
train_size=0.7,
test_size=0.2,
val_size=0.1,
predict_size=0.0,
batch_size=None,
shuffle=True,
repeat=False,
automatic_batching=None,
num_workers=0,
pin_memory=False,
):
"""
Initialize the object, creating datasets based on the input problem.
@@ -170,8 +184,8 @@ class PinaDataModule(LightningDataModule):
:param pin_memory: Whether to use pinned memory for faster data transfer to GPU. (Default False)
:type pin_memory: bool
"""
logging.debug('Start initialization of Pina DataModule')
logging.info('Start initialization of Pina DataModule')
logging.debug("Start initialization of Pina DataModule")
logging.info("Start initialization of Pina DataModule")
super().__init__()
# Store fixed attributes
@@ -182,13 +196,16 @@ class PinaDataModule(LightningDataModule):
if batch_size is None and num_workers != 0:
warnings.warn(
"Setting num_workers when batch_size is None has no effect on "
"the DataLoading process.")
"the DataLoading process."
)
self.num_workers = 0
else:
self.num_workers = num_workers
if batch_size is None and pin_memory:
warnings.warn("Setting pin_memory to True has no effect when "
"batch_size is None.")
warnings.warn(
"Setting pin_memory to True has no effect when "
"batch_size is None."
)
self.pin_memory = False
else:
self.pin_memory = pin_memory
@@ -204,22 +221,22 @@ class PinaDataModule(LightningDataModule):
# Split input data into subsets
splits_dict = {}
if train_size > 0:
splits_dict['train'] = train_size
splits_dict["train"] = train_size
self.train_dataset = None
else:
self.train_dataloader = super().train_dataloader
if test_size > 0:
splits_dict['test'] = test_size
splits_dict["test"] = test_size
self.test_dataset = None
else:
self.test_dataloader = super().test_dataloader
if val_size > 0:
splits_dict['val'] = val_size
splits_dict["val"] = val_size
self.val_dataset = None
else:
self.val_dataloader = super().val_dataloader
if predict_size > 0:
splits_dict['predict'] = predict_size
splits_dict["predict"] = predict_size
self.predict_dataset = None
else:
self.predict_dataloader = super().predict_dataloader
@@ -230,29 +247,36 @@ class PinaDataModule(LightningDataModule):
"""
Perform the splitting of the dataset
"""
logging.debug('Start setup of Pina DataModule obj')
if stage == 'fit' or stage is None:
logging.debug("Start setup of Pina DataModule obj")
if stage == "fit" or stage is None:
self.train_dataset = PinaDatasetFactory(
self.collector_splits['train'],
self.collector_splits["train"],
max_conditions_lengths=self.find_max_conditions_lengths(
'train'), automatic_batching=self.automatic_batching)
if 'val' in self.collector_splits.keys():
self.val_dataset = PinaDatasetFactory(
self.collector_splits['val'],
max_conditions_lengths=self.find_max_conditions_lengths(
'val'), automatic_batching=self.automatic_batching
)
elif stage == 'test':
self.test_dataset = PinaDatasetFactory(
self.collector_splits['test'],
max_conditions_lengths=self.find_max_conditions_lengths(
'test'), automatic_batching=self.automatic_batching
"train"
),
automatic_batching=self.automatic_batching,
)
elif stage == 'predict':
if "val" in self.collector_splits.keys():
self.val_dataset = PinaDatasetFactory(
self.collector_splits["val"],
max_conditions_lengths=self.find_max_conditions_lengths(
"val"
),
automatic_batching=self.automatic_batching,
)
elif stage == "test":
self.test_dataset = PinaDatasetFactory(
self.collector_splits["test"],
max_conditions_lengths=self.find_max_conditions_lengths("test"),
automatic_batching=self.automatic_batching,
)
elif stage == "predict":
self.predict_dataset = PinaDatasetFactory(
self.collector_splits['predict'],
self.collector_splits["predict"],
max_conditions_lengths=self.find_max_conditions_lengths(
'predict'), automatic_batching=self.automatic_batching
"predict"
),
automatic_batching=self.automatic_batching,
)
else:
raise ValueError(
@@ -261,28 +285,29 @@ class PinaDataModule(LightningDataModule):
@staticmethod
def _split_condition(condition_dict, splits_dict):
len_condition = len(condition_dict['input_points'])
len_condition = len(condition_dict["input_points"])
lengths = [
int(len_condition * length) for length in
splits_dict.values()
int(len_condition * length) for length in splits_dict.values()
]
remainder = len_condition - sum(lengths)
for i in range(remainder):
lengths[i % len(lengths)] += 1
splits_dict = {k: max(1, v) for k, v in zip(splits_dict.keys(), lengths)
}
splits_dict = {
k: max(1, v) for k, v in zip(splits_dict.keys(), lengths)
}
to_return_dict = {}
offset = 0
for stage, stage_len in splits_dict.items():
to_return_dict[stage] = {k: v[offset:offset + stage_len]
for k, v in condition_dict.items() if
k != 'equation'
# Equations are NEVER dataloaded
}
to_return_dict[stage] = {
k: v[offset : offset + stage_len]
for k, v in condition_dict.items()
if k != "equation"
# Equations are NEVER dataloaded
}
if offset + stage_len > len_condition:
offset = len_condition - 1
continue
@@ -298,13 +323,12 @@ class PinaDataModule(LightningDataModule):
def _apply_shuffle(condition_dict, len_data):
idx = torch.randperm(len_data)
for k, v in condition_dict.items():
if k == 'equation':
if k == "equation":
continue
if isinstance(v, list):
condition_dict[k] = [v[i] for i in idx]
elif isinstance(v, LabelTensor):
condition_dict[k] = LabelTensor(v.tensor[idx],
v.labels)
condition_dict[k] = LabelTensor(v.tensor[idx], v.labels)
elif isinstance(v, torch.Tensor):
condition_dict[k] = v[idx]
else:
@@ -312,42 +336,53 @@ class PinaDataModule(LightningDataModule):
# ----------- End auxiliary function ------------
logging.debug('Dataset creation in PinaDataModule obj')
logging.debug("Dataset creation in PinaDataModule obj")
split_names = list(splits_dict.keys())
dataset_dict = {name: {} for name in split_names}
for condition_name, condition_dict in collector.data_collections.items():
len_data = len(condition_dict['input_points'])
for (
condition_name,
condition_dict,
) in collector.data_collections.items():
len_data = len(condition_dict["input_points"])
if self.shuffle:
_apply_shuffle(condition_dict, len_data)
for key, data in self._split_condition(condition_dict,
splits_dict).items():
for key, data in self._split_condition(
condition_dict, splits_dict
).items():
dataset_dict[key].update({condition_name: data})
return dataset_dict
def _create_dataloader(self, split, dataset):
shuffle = self.shuffle if split == 'train' else False
shuffle = self.shuffle if split == "train" else False
# Suppress the warning about num_workers.
# In many cases, especially for PINNs, serial data loading can outperform parallel data loading.
warnings.filterwarnings(
"ignore",
message=(
r"The '(train|val|test)_dataloader' does not have many workers which may be a bottleneck."),
module="lightning.pytorch.trainer.connectors.data_connector"
r"The '(train|val|test)_dataloader' does not have many workers which may be a bottleneck."
),
module="lightning.pytorch.trainer.connectors.data_connector",
)
# Use custom batching (good if batch size is large)
if self.batch_size is not None:
sampler = PinaSampler(dataset, shuffle)
if self.automatic_batching:
collate = Collator(self.find_max_conditions_lengths(split),
dataset=dataset)
collate = Collator(
self.find_max_conditions_lengths(split), dataset=dataset
)
else:
collate = Collator(None, dataset=dataset)
return DataLoader(dataset, self.batch_size,
collate_fn=collate, sampler=sampler,
num_workers=self.num_workers)
return DataLoader(
dataset,
self.batch_size,
collate_fn=collate,
sampler=sampler,
num_workers=self.num_workers,
)
dataloader = DummyDataloader(dataset)
dataloader.dataset = self._transfer_batch_to_device(
dataloader.dataset, self.trainer.strategy.root_device, 0)
dataloader.dataset, self.trainer.strategy.root_device, 0
)
self.transfer_batch_to_device = self._transfer_batch_to_device_dummy
return dataloader
@@ -355,31 +390,32 @@ class PinaDataModule(LightningDataModule):
max_conditions_lengths = {}
for k, v in self.collector_splits[split].items():
if self.batch_size is None:
max_conditions_lengths[k] = len(v['input_points'])
max_conditions_lengths[k] = len(v["input_points"])
elif self.repeat:
max_conditions_lengths[k] = self.batch_size
else:
max_conditions_lengths[k] = min(len(v['input_points']),
self.batch_size)
max_conditions_lengths[k] = min(
len(v["input_points"]), self.batch_size
)
return max_conditions_lengths
def val_dataloader(self):
"""
Create the validation dataloader
"""
return self._create_dataloader('val', self.val_dataset)
return self._create_dataloader("val", self.val_dataset)
def train_dataloader(self):
"""
Create the training dataloader
"""
return self._create_dataloader('train', self.train_dataset)
return self._create_dataloader("train", self.train_dataset)
def test_dataloader(self):
"""
Create the testing dataloader
"""
return self._create_dataloader('test', self.test_dataset)
return self._create_dataloader("test", self.test_dataset)
def predict_dataloader(self):
"""
@@ -397,9 +433,12 @@ class PinaDataModule(LightningDataModule):
training loop and is used to transfer the batch to the device.
"""
batch = [
(k,
super(LightningDataModule, self).transfer_batch_to_device(
v, device, dataloader_idx))
(
k,
super(LightningDataModule, self).transfer_batch_to_device(
v, device, dataloader_idx
),
)
for k, v in batch.items()
]

View File

@@ -1,6 +1,7 @@
"""
This module provide basic data management functionalities
"""
import functools
import torch
from torch.utils.data import Dataset
@@ -19,15 +20,24 @@ class PinaDatasetFactory:
def __new__(cls, conditions_dict, **kwargs):
if len(conditions_dict) == 0:
raise ValueError('No conditions provided')
if all([isinstance(v['input_points'], torch.Tensor) for v
in conditions_dict.values()]):
raise ValueError("No conditions provided")
if all(
[
isinstance(v["input_points"], torch.Tensor)
for v in conditions_dict.values()
]
):
return PinaTensorDataset(conditions_dict, **kwargs)
elif all([isinstance(v['input_points'], list) for v
in conditions_dict.values()]):
elif all(
[
isinstance(v["input_points"], list)
for v in conditions_dict.values()
]
):
return PinaGraphDataset(conditions_dict, **kwargs)
raise ValueError('Conditions must be either torch.Tensor or list of Data '
'objects.')
raise ValueError(
"Conditions must be either torch.Tensor or list of Data " "objects."
)
class PinaDataset(Dataset):
@@ -38,14 +48,15 @@ class PinaDataset(Dataset):
def __init__(self, conditions_dict, max_conditions_lengths):
self.conditions_dict = conditions_dict
self.max_conditions_lengths = max_conditions_lengths
self.conditions_length = {k: len(v['input_points']) for k, v in
self.conditions_dict.items()}
self.conditions_length = {
k: len(v["input_points"]) for k, v in self.conditions_dict.items()
}
self.length = max(self.conditions_length.values())
def _get_max_len(self):
max_len = 0
for condition in self.conditions_dict.values():
max_len = max(max_len, len(condition['input_points']))
max_len = max(max_len, len(condition["input_points"]))
return max_len
def __len__(self):
@@ -57,8 +68,9 @@ class PinaDataset(Dataset):
class PinaTensorDataset(PinaDataset):
def __init__(self, conditions_dict, max_conditions_lengths,
automatic_batching):
def __init__(
self, conditions_dict, max_conditions_lengths, automatic_batching
):
super().__init__(conditions_dict, max_conditions_lengths)
if automatic_batching:
@@ -68,19 +80,23 @@ class PinaTensorDataset(PinaDataset):
def _getitem_int(self, idx):
return {
k: {k_data: v[k_data][idx % len(v['input_points'])] for k_data
in v.keys()} for k, v in self.conditions_dict.items()
k: {
k_data: v[k_data][idx % len(v["input_points"])]
for k_data in v.keys()
}
for k, v in self.conditions_dict.items()
}
def fetch_from_idx_list(self, idx):
to_return_dict = {}
for condition, data in self.conditions_dict.items():
cond_idx = idx[:self.max_conditions_lengths[condition]]
cond_idx = idx[: self.max_conditions_lengths[condition]]
condition_len = self.conditions_length[condition]
if self.length > condition_len:
cond_idx = [idx % condition_len for idx in cond_idx]
to_return_dict[condition] = {k: v[cond_idx]
for k, v in data.items()}
to_return_dict[condition] = {
k: v[cond_idx] for k, v in data.items()
}
return to_return_dict
@staticmethod
@@ -99,15 +115,14 @@ class PinaTensorDataset(PinaDataset):
"""
Method to return input points for training.
"""
return {
k: v['input_points'] for k, v in self.conditions_dict.items()
}
return {k: v["input_points"] for k, v in self.conditions_dict.items()}
class PinaBatch(Batch):
"""
Add extract function to torch_geometric Batch object
"""
def __init__(self):
super().__init__(self)
@@ -116,8 +131,8 @@ class PinaBatch(Batch):
"""
Perform extraction of labels on node features (x)
:param labels: Labels to extract
:type labels: list[str] | tuple[str] | str
:param labels: Labels to extract
:type labels: list[str] | tuple[str] | str
:return: Batch object with extraction performed on x
:rtype: PinaBatch
"""
@@ -127,8 +142,9 @@ class PinaBatch(Batch):
class PinaGraphDataset(PinaDataset):
def __init__(self, conditions_dict, max_conditions_lengths,
automatic_batching):
def __init__(
self, conditions_dict, max_conditions_lengths, automatic_batching
):
super().__init__(conditions_dict, max_conditions_lengths)
self.in_labels = {}
self.out_labels = None
@@ -137,35 +153,43 @@ class PinaGraphDataset(PinaDataset):
else:
self._getitem_func = self._getitem_dummy
ex_data = conditions_dict[list(conditions_dict.keys())[
0]]['input_points'][0]
ex_data = conditions_dict[list(conditions_dict.keys())[0]][
"input_points"
][0]
for name, attr in ex_data.items():
if isinstance(attr, LabelTensor):
self.in_labels[name] = attr.stored_labels
ex_data = conditions_dict[list(conditions_dict.keys())[
0]]['output_points'][0]
ex_data = conditions_dict[list(conditions_dict.keys())[0]][
"output_points"
][0]
if isinstance(ex_data, LabelTensor):
self.out_labels = ex_data.labels
self._create_graph_batch_from_list = self._labelise_batch(
self._base_create_graph_batch_from_list) if self.in_labels \
self._create_graph_batch_from_list = (
self._labelise_batch(self._base_create_graph_batch_from_list)
if self.in_labels
else self._base_create_graph_batch_from_list
)
self._create_output_batch = self._labelise_tensor(
self._base_create_output_batch) if self.out_labels is not None \
self._create_output_batch = (
self._labelise_tensor(self._base_create_output_batch)
if self.out_labels is not None
else self._base_create_output_batch
)
def fetch_from_idx_list(self, idx):
to_return_dict = {}
for condition, data in self.conditions_dict.items():
cond_idx = idx[:self.max_conditions_lengths[condition]]
cond_idx = idx[: self.max_conditions_lengths[condition]]
condition_len = self.conditions_length[condition]
if self.length > condition_len:
cond_idx = [idx % condition_len for idx in cond_idx]
to_return_dict[condition] = {
k: self._create_graph_batch_from_list([v[i] for i in idx])
if isinstance(v, list)
else self._create_output_batch(v[idx])
k: (
self._create_graph_batch_from_list([v[i] for i in idx])
if isinstance(v, list)
else self._create_output_batch(v[idx])
)
for k, v in data.items()
}
@@ -184,8 +208,11 @@ class PinaGraphDataset(PinaDataset):
def _getitem_int(self, idx):
return {
k: {k_data: v[k_data][idx % len(v['input_points'])] for k_data
in v.keys()} for k, v in self.conditions_dict.items()
k: {
k_data: v[k_data][idx % len(v["input_points"])]
for k_data in v.keys()
}
for k, v in self.conditions_dict.items()
}
def get_all_data(self):
@@ -204,6 +231,7 @@ class PinaGraphDataset(PinaDataset):
tmp.labels = v
batch[k] = tmp
return batch
return wrapper
def _labelise_tensor(self, func):
@@ -213,6 +241,7 @@ class PinaGraphDataset(PinaDataset):
if isinstance(out, LabelTensor):
out.labels = self.out_labels
return out
return wrapper
def create_graph_batch(self, data):