Formatting

* Adding black as dev dependency
* Formatting pina code
* Formatting tests
This commit is contained in:
Dario Coscia
2025-02-24 11:26:49 +01:00
committed by Nicola Demo
parent 4c4482b155
commit 42ab1a666b
77 changed files with 1170 additions and 924 deletions

View File

@@ -1,6 +1,7 @@
"""
This module provide basic data management functionalities
"""
import functools
import torch
from torch.utils.data import Dataset
@@ -19,15 +20,24 @@ class PinaDatasetFactory:
def __new__(cls, conditions_dict, **kwargs):
if len(conditions_dict) == 0:
raise ValueError('No conditions provided')
if all([isinstance(v['input_points'], torch.Tensor) for v
in conditions_dict.values()]):
raise ValueError("No conditions provided")
if all(
[
isinstance(v["input_points"], torch.Tensor)
for v in conditions_dict.values()
]
):
return PinaTensorDataset(conditions_dict, **kwargs)
elif all([isinstance(v['input_points'], list) for v
in conditions_dict.values()]):
elif all(
[
isinstance(v["input_points"], list)
for v in conditions_dict.values()
]
):
return PinaGraphDataset(conditions_dict, **kwargs)
raise ValueError('Conditions must be either torch.Tensor or list of Data '
'objects.')
raise ValueError(
"Conditions must be either torch.Tensor or list of Data " "objects."
)
class PinaDataset(Dataset):
@@ -38,14 +48,15 @@ class PinaDataset(Dataset):
def __init__(self, conditions_dict, max_conditions_lengths):
self.conditions_dict = conditions_dict
self.max_conditions_lengths = max_conditions_lengths
self.conditions_length = {k: len(v['input_points']) for k, v in
self.conditions_dict.items()}
self.conditions_length = {
k: len(v["input_points"]) for k, v in self.conditions_dict.items()
}
self.length = max(self.conditions_length.values())
def _get_max_len(self):
max_len = 0
for condition in self.conditions_dict.values():
max_len = max(max_len, len(condition['input_points']))
max_len = max(max_len, len(condition["input_points"]))
return max_len
def __len__(self):
@@ -57,8 +68,9 @@ class PinaDataset(Dataset):
class PinaTensorDataset(PinaDataset):
def __init__(self, conditions_dict, max_conditions_lengths,
automatic_batching):
def __init__(
self, conditions_dict, max_conditions_lengths, automatic_batching
):
super().__init__(conditions_dict, max_conditions_lengths)
if automatic_batching:
@@ -68,19 +80,23 @@ class PinaTensorDataset(PinaDataset):
def _getitem_int(self, idx):
return {
k: {k_data: v[k_data][idx % len(v['input_points'])] for k_data
in v.keys()} for k, v in self.conditions_dict.items()
k: {
k_data: v[k_data][idx % len(v["input_points"])]
for k_data in v.keys()
}
for k, v in self.conditions_dict.items()
}
def fetch_from_idx_list(self, idx):
to_return_dict = {}
for condition, data in self.conditions_dict.items():
cond_idx = idx[:self.max_conditions_lengths[condition]]
cond_idx = idx[: self.max_conditions_lengths[condition]]
condition_len = self.conditions_length[condition]
if self.length > condition_len:
cond_idx = [idx % condition_len for idx in cond_idx]
to_return_dict[condition] = {k: v[cond_idx]
for k, v in data.items()}
to_return_dict[condition] = {
k: v[cond_idx] for k, v in data.items()
}
return to_return_dict
@staticmethod
@@ -99,15 +115,14 @@ class PinaTensorDataset(PinaDataset):
"""
Method to return input points for training.
"""
return {
k: v['input_points'] for k, v in self.conditions_dict.items()
}
return {k: v["input_points"] for k, v in self.conditions_dict.items()}
class PinaBatch(Batch):
"""
Add extract function to torch_geometric Batch object
"""
def __init__(self):
super().__init__(self)
@@ -116,8 +131,8 @@ class PinaBatch(Batch):
"""
Perform extraction of labels on node features (x)
:param labels: Labels to extract
:type labels: list[str] | tuple[str] | str
:param labels: Labels to extract
:type labels: list[str] | tuple[str] | str
:return: Batch object with extraction performed on x
:rtype: PinaBatch
"""
@@ -127,8 +142,9 @@ class PinaBatch(Batch):
class PinaGraphDataset(PinaDataset):
def __init__(self, conditions_dict, max_conditions_lengths,
automatic_batching):
def __init__(
self, conditions_dict, max_conditions_lengths, automatic_batching
):
super().__init__(conditions_dict, max_conditions_lengths)
self.in_labels = {}
self.out_labels = None
@@ -137,35 +153,43 @@ class PinaGraphDataset(PinaDataset):
else:
self._getitem_func = self._getitem_dummy
ex_data = conditions_dict[list(conditions_dict.keys())[
0]]['input_points'][0]
ex_data = conditions_dict[list(conditions_dict.keys())[0]][
"input_points"
][0]
for name, attr in ex_data.items():
if isinstance(attr, LabelTensor):
self.in_labels[name] = attr.stored_labels
ex_data = conditions_dict[list(conditions_dict.keys())[
0]]['output_points'][0]
ex_data = conditions_dict[list(conditions_dict.keys())[0]][
"output_points"
][0]
if isinstance(ex_data, LabelTensor):
self.out_labels = ex_data.labels
self._create_graph_batch_from_list = self._labelise_batch(
self._base_create_graph_batch_from_list) if self.in_labels \
self._create_graph_batch_from_list = (
self._labelise_batch(self._base_create_graph_batch_from_list)
if self.in_labels
else self._base_create_graph_batch_from_list
)
self._create_output_batch = self._labelise_tensor(
self._base_create_output_batch) if self.out_labels is not None \
self._create_output_batch = (
self._labelise_tensor(self._base_create_output_batch)
if self.out_labels is not None
else self._base_create_output_batch
)
def fetch_from_idx_list(self, idx):
to_return_dict = {}
for condition, data in self.conditions_dict.items():
cond_idx = idx[:self.max_conditions_lengths[condition]]
cond_idx = idx[: self.max_conditions_lengths[condition]]
condition_len = self.conditions_length[condition]
if self.length > condition_len:
cond_idx = [idx % condition_len for idx in cond_idx]
to_return_dict[condition] = {
k: self._create_graph_batch_from_list([v[i] for i in idx])
if isinstance(v, list)
else self._create_output_batch(v[idx])
k: (
self._create_graph_batch_from_list([v[i] for i in idx])
if isinstance(v, list)
else self._create_output_batch(v[idx])
)
for k, v in data.items()
}
@@ -184,8 +208,11 @@ class PinaGraphDataset(PinaDataset):
def _getitem_int(self, idx):
return {
k: {k_data: v[k_data][idx % len(v['input_points'])] for k_data
in v.keys()} for k, v in self.conditions_dict.items()
k: {
k_data: v[k_data][idx % len(v["input_points"])]
for k_data in v.keys()
}
for k, v in self.conditions_dict.items()
}
def get_all_data(self):
@@ -204,6 +231,7 @@ class PinaGraphDataset(PinaDataset):
tmp.labels = v
batch[k] = tmp
return batch
return wrapper
def _labelise_tensor(self, func):
@@ -213,6 +241,7 @@ class PinaGraphDataset(PinaDataset):
if isinstance(out, LabelTensor):
out.labels = self.out_labels
return out
return wrapper
def create_graph_batch(self, data):