Formatting

* Adding black as dev dependency
* Formatting pina code
* Formatting tests
This commit is contained in:
Dario Coscia
2025-02-24 11:26:49 +01:00
committed by Nicola Demo
parent 4c4482b155
commit 42ab1a666b
77 changed files with 1170 additions and 924 deletions

View File

@@ -1,4 +1,4 @@
""" Module for AbstractProblem class """
"""Module for AbstractProblem class"""
from abc import ABCMeta, abstractmethod
from ..utils import check_consistency
@@ -60,7 +60,7 @@ class AbstractProblem(metaclass=ABCMeta):
elif hasattr(cond, "domain"):
to_return[cond_name] = self._discretised_domains[cond.domain]
return to_return
@property
def discretised_domains(self):
return self._discretised_domains
@@ -138,11 +138,9 @@ class AbstractProblem(metaclass=ABCMeta):
"""
return self.conditions
def discretise_domain(self,
n=None,
mode="random",
domains="all",
sample_rules=None):
def discretise_domain(
self, n=None, mode="random", domains="all", sample_rules=None
):
"""
Generate a set of points to span the `Location` of all the conditions of
the problem.
@@ -193,9 +191,7 @@ class AbstractProblem(metaclass=ABCMeta):
"You can't specify both n and sample_rules at the same time."
)
elif n is None and sample_rules is None:
raise RuntimeError(
"You have to specify either n or sample_rules."
)
raise RuntimeError("You have to specify either n or sample_rules.")
def _apply_default_discretization(self, n, mode, domains):
for domain in domains:
@@ -213,15 +209,17 @@ class AbstractProblem(metaclass=ABCMeta):
if not isinstance(self.domains[domain], CartesianDomain):
raise RuntimeError(
"Custom discretisation can be applied only on Cartesian "
"domains")
"domains"
)
discretised_tensor = []
for var, rules in sample_rules.items():
n, mode = rules['n'], rules['mode']
n, mode = rules["n"], rules["mode"]
points = self.domains[domain].sample(n, mode, var)
discretised_tensor.append(points)
self.discretised_domains[domain] = merge_tensors(
discretised_tensor).sort_labels()
discretised_tensor
).sort_labels()
def add_points(self, new_points_dict):
"""
@@ -232,4 +230,5 @@ class AbstractProblem(metaclass=ABCMeta):
"""
for k, v in new_points_dict.items():
self.discretised_domains[k] = LabelTensor.vstack(
[self.discretised_domains[k], v])
[self.discretised_domains[k], v]
)

View File

@@ -1,4 +1,5 @@
"""Module for the ParametricProblem class"""
import torch
from abc import abstractmethod
from .abstract_problem import AbstractProblem
@@ -51,12 +52,9 @@ class InverseProblem(AbstractProblem):
for i, var in enumerate(self.unknown_variables):
range_var = self.unknown_parameter_domain.range_[var]
tensor_var = (
torch.rand(1, requires_grad=True) * range_var[1]
+ range_var[0]
)
self.unknown_parameters[var] = torch.nn.Parameter(
tensor_var
torch.rand(1, requires_grad=True) * range_var[1] + range_var[0]
)
self.unknown_parameters[var] = torch.nn.Parameter(tensor_var)
@abstractmethod
def unknown_parameter_domain(self):

View File

@@ -1,9 +1,9 @@
__all__ = [
'Poisson2DSquareProblem',
'SupervisedProblem',
'InversePoisson2DSquareProblem',
'DiffusionReactionProblem',
'InverseDiffusionReactionProblem'
"Poisson2DSquareProblem",
"SupervisedProblem",
"InversePoisson2DSquareProblem",
"DiffusionReactionProblem",
"InverseDiffusionReactionProblem",
]
from .poisson_2d_square import Poisson2DSquareProblem

View File

@@ -1,4 +1,4 @@
""" Definition of the diffusion-reaction problem."""
"""Definition of the diffusion-reaction problem."""
import torch
from pina import Condition
@@ -7,17 +7,22 @@ from pina.equation.equation import Equation
from pina.domain import CartesianDomain
from pina.operator import grad
def diffusion_reaction(input_, output_):
"""
Implementation of the diffusion-reaction equation.
"""
x = input_.extract('x')
t = input_.extract('t')
u_t = grad(output_, input_, d='t')
u_x = grad(output_, input_, d='x')
u_xx = grad(u_x, input_, d='x')
r = torch.exp(-t) * (1.5 * torch.sin(2*x) + (8/3) * torch.sin(3*x) +
(15/4) * torch.sin(4*x) + (63/8) * torch.sin(8*x))
x = input_.extract("x")
t = input_.extract("t")
u_t = grad(output_, input_, d="t")
u_x = grad(output_, input_, d="x")
u_xx = grad(u_x, input_, d="x")
r = torch.exp(-t) * (
1.5 * torch.sin(2 * x)
+ (8 / 3) * torch.sin(3 * x)
+ (15 / 4) * torch.sin(4 * x)
+ (63 / 8) * torch.sin(8 * x)
)
return u_t - u_xx - r
@@ -26,20 +31,25 @@ class DiffusionReactionProblem(TimeDependentProblem, SpatialProblem):
Implementation of the diffusion-reaction problem on the spatial interval
[-pi, pi] and temporal interval [0,1].
"""
output_variables = ['u']
spatial_domain = CartesianDomain({'x': [-torch.pi, torch.pi]})
temporal_domain = CartesianDomain({'t': [0, 1]})
output_variables = ["u"]
spatial_domain = CartesianDomain({"x": [-torch.pi, torch.pi]})
temporal_domain = CartesianDomain({"t": [0, 1]})
conditions = {
'D': Condition(
domain=CartesianDomain({'x': [-torch.pi, torch.pi], 't': [0, 1]}),
equation=Equation(diffusion_reaction))
"D": Condition(
domain=CartesianDomain({"x": [-torch.pi, torch.pi], "t": [0, 1]}),
equation=Equation(diffusion_reaction),
)
}
def _solution(self, pts):
t = pts.extract('t')
x = pts.extract('x')
t = pts.extract("t")
x = pts.extract("x")
return torch.exp(-t) * (
torch.sin(x) + (1/2)*torch.sin(2*x) + (1/3)*torch.sin(3*x) +
(1/4)*torch.sin(4*x) + (1/8)*torch.sin(8*x)
torch.sin(x)
+ (1 / 2) * torch.sin(2 * x)
+ (1 / 3) * torch.sin(3 * x)
+ (1 / 4) * torch.sin(4 * x)
+ (1 / 8) * torch.sin(8 * x)
)

View File

@@ -1,4 +1,4 @@
""" Definition of the diffusion-reaction problem."""
"""Definition of the diffusion-reaction problem."""
import torch
from pina import Condition, LabelTensor
@@ -7,45 +7,57 @@ from pina.equation.equation import Equation
from pina.domain import CartesianDomain
from pina.operator import grad
def diffusion_reaction(input_, output_):
"""
Implementation of the diffusion-reaction equation.
"""
x = input_.extract('x')
t = input_.extract('t')
u_t = grad(output_, input_, d='t')
u_x = grad(output_, input_, d='x')
u_xx = grad(u_x, input_, d='x')
r = torch.exp(-t) * (1.5 * torch.sin(2*x) + (8/3) * torch.sin(3*x) +
(15/4) * torch.sin(4*x) + (63/8) * torch.sin(8*x))
x = input_.extract("x")
t = input_.extract("t")
u_t = grad(output_, input_, d="t")
u_x = grad(output_, input_, d="x")
u_xx = grad(u_x, input_, d="x")
r = torch.exp(-t) * (
1.5 * torch.sin(2 * x)
+ (8 / 3) * torch.sin(3 * x)
+ (15 / 4) * torch.sin(4 * x)
+ (63 / 8) * torch.sin(8 * x)
)
return u_t - u_xx - r
class InverseDiffusionReactionProblem(TimeDependentProblem,
SpatialProblem,
InverseProblem):
class InverseDiffusionReactionProblem(
TimeDependentProblem, SpatialProblem, InverseProblem
):
"""
Implementation of the diffusion-reaction inverse problem on the spatial
interval [-pi, pi] and temporal interval [0,1], with unknown parameters
Implementation of the diffusion-reaction inverse problem on the spatial
interval [-pi, pi] and temporal interval [0,1], with unknown parameters
in the interval [-1,1].
"""
output_variables = ['u']
spatial_domain = CartesianDomain({'x': [-torch.pi, torch.pi]})
temporal_domain = CartesianDomain({'t': [0, 1]})
unknown_parameter_domain = CartesianDomain({'mu': [-1, 1]})
output_variables = ["u"]
spatial_domain = CartesianDomain({"x": [-torch.pi, torch.pi]})
temporal_domain = CartesianDomain({"t": [0, 1]})
unknown_parameter_domain = CartesianDomain({"mu": [-1, 1]})
conditions = {
'D': Condition(
domain=CartesianDomain({'x': [-torch.pi, torch.pi], 't': [0, 1]}),
equation=Equation(diffusion_reaction)),
'data' : Condition(
input_points=LabelTensor(torch.randn(10, 2), ['x', 't']),
output_points=LabelTensor(torch.randn(10, 1), ['u'])),
"D": Condition(
domain=CartesianDomain({"x": [-torch.pi, torch.pi], "t": [0, 1]}),
equation=Equation(diffusion_reaction),
),
"data": Condition(
input_points=LabelTensor(torch.randn(10, 2), ["x", "t"]),
output_points=LabelTensor(torch.randn(10, 1), ["u"]),
),
}
def _solution(self, pts):
t = pts.extract('t')
x = pts.extract('x')
t = pts.extract("t")
x = pts.extract("x")
return torch.exp(-t) * (
torch.sin(x) + (1/2)*torch.sin(2*x) + (1/3)*torch.sin(3*x) +
(1/4)*torch.sin(4*x) + (1/8)*torch.sin(8*x)
torch.sin(x)
+ (1 / 2) * torch.sin(2 * x)
+ (1 / 3) * torch.sin(3 * x)
+ (1 / 4) * torch.sin(4 * x)
+ (1 / 8) * torch.sin(8 * x)
)

View File

@@ -1,4 +1,4 @@
""" Definition of the inverse Poisson problem on a square domain."""
"""Definition of the inverse Poisson problem on a square domain."""
import torch
from pina import Condition, LabelTensor
@@ -8,43 +8,49 @@ from pina.domain import CartesianDomain
from pina.equation.equation import Equation
from pina.equation.equation_factory import FixedValue
def laplace_equation(input_, output_, params_):
"""
Implementation of the laplace equation.
"""
force_term = torch.exp(- 2*(input_.extract(['x']) - params_['mu1'])**2
- 2*(input_.extract(['y']) - params_['mu2'])**2)
delta_u = laplacian(output_, input_, components=['u'], d=['x', 'y'])
force_term = torch.exp(
-2 * (input_.extract(["x"]) - params_["mu1"]) ** 2
- 2 * (input_.extract(["y"]) - params_["mu2"]) ** 2
)
delta_u = laplacian(output_, input_, components=["u"], d=["x", "y"])
return delta_u - force_term
class InversePoisson2DSquareProblem(SpatialProblem, InverseProblem):
"""
Implementation of the inverse 2-dimensional Poisson problem
Implementation of the inverse 2-dimensional Poisson problem
on a square domain, with parameter domain [-1, 1] x [-1, 1].
"""
output_variables = ['u']
output_variables = ["u"]
x_min, x_max = -2, 2
y_min, y_max = -2, 2
data_input = LabelTensor(torch.rand(10, 2), ['x', 'y'])
data_output = LabelTensor(torch.rand(10, 1), ['u'])
spatial_domain = CartesianDomain({'x': [x_min, x_max], 'y': [y_min, y_max]})
unknown_parameter_domain = CartesianDomain({'mu1': [-1, 1], 'mu2': [-1, 1]})
data_input = LabelTensor(torch.rand(10, 2), ["x", "y"])
data_output = LabelTensor(torch.rand(10, 1), ["u"])
spatial_domain = CartesianDomain({"x": [x_min, x_max], "y": [y_min, y_max]})
unknown_parameter_domain = CartesianDomain({"mu1": [-1, 1], "mu2": [-1, 1]})
domains = {
'g1': CartesianDomain({'x': [x_min, x_max], 'y': y_max}),
'g2': CartesianDomain({'x': [x_min, x_max], 'y': y_min}),
'g3': CartesianDomain({'x': x_max, 'y': [y_min, y_max]}),
'g4': CartesianDomain({'x': x_min, 'y': [y_min, y_max]}),
'D': CartesianDomain({'x': [x_min, x_max], 'y': [y_min, y_max]}),
"g1": CartesianDomain({"x": [x_min, x_max], "y": y_max}),
"g2": CartesianDomain({"x": [x_min, x_max], "y": y_min}),
"g3": CartesianDomain({"x": x_max, "y": [y_min, y_max]}),
"g4": CartesianDomain({"x": x_min, "y": [y_min, y_max]}),
"D": CartesianDomain({"x": [x_min, x_max], "y": [y_min, y_max]}),
}
conditions = {
'nil_g1': Condition(domain='g1', equation=FixedValue(0.0)),
'nil_g2': Condition(domain='g2', equation=FixedValue(0.0)),
'nil_g3': Condition(domain='g3', equation=FixedValue(0.0)),
'nil_g4': Condition(domain='g4', equation=FixedValue(0.0)),
'laplace_D': Condition(domain='D', equation=Equation(laplace_equation)),
'data': Condition(
input_points=data_input.extract(['x', 'y']),
output_points=data_output)
"nil_g1": Condition(domain="g1", equation=FixedValue(0.0)),
"nil_g2": Condition(domain="g2", equation=FixedValue(0.0)),
"nil_g3": Condition(domain="g3", equation=FixedValue(0.0)),
"nil_g4": Condition(domain="g4", equation=FixedValue(0.0)),
"laplace_D": Condition(domain="D", equation=Equation(laplace_equation)),
"data": Condition(
input_points=data_input.extract(["x", "y"]),
output_points=data_output,
),
}

View File

@@ -1,4 +1,4 @@
""" Definition of the Poisson problem on a square domain."""
"""Definition of the Poisson problem on a square domain."""
from pina.problem import SpatialProblem
from pina.operator import laplacian
@@ -8,41 +8,47 @@ from pina.equation.equation import Equation
from pina.equation.equation_factory import FixedValue
import torch
def laplace_equation(input_, output_):
"""
Implementation of the laplace equation.
"""
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
torch.sin(input_.extract(['y']) * torch.pi))
delta_u = laplacian(output_.extract(['u']), input_)
force_term = torch.sin(input_.extract(["x"]) * torch.pi) * torch.sin(
input_.extract(["y"]) * torch.pi
)
delta_u = laplacian(output_.extract(["u"]), input_)
return delta_u - force_term
my_laplace = Equation(laplace_equation)
class Poisson2DSquareProblem(SpatialProblem):
"""
Implementation of the 2-dimensional Poisson problem on a square domain.
"""
output_variables = ['u']
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
output_variables = ["u"]
spatial_domain = CartesianDomain({"x": [0, 1], "y": [0, 1]})
domains = {
'D': CartesianDomain({'x': [0, 1], 'y': [0, 1]}),
'g1': CartesianDomain({'x': [0, 1], 'y': 1}),
'g2': CartesianDomain({'x': [0, 1], 'y': 0}),
'g3': CartesianDomain({'x': 1, 'y': [0, 1]}),
'g4': CartesianDomain({'x': 0, 'y': [0, 1]}),
"D": CartesianDomain({"x": [0, 1], "y": [0, 1]}),
"g1": CartesianDomain({"x": [0, 1], "y": 1}),
"g2": CartesianDomain({"x": [0, 1], "y": 0}),
"g3": CartesianDomain({"x": 1, "y": [0, 1]}),
"g4": CartesianDomain({"x": 0, "y": [0, 1]}),
}
conditions = {
'nil_g1': Condition(domain='g1', equation=FixedValue(0.0)),
'nil_g2': Condition(domain='g2', equation=FixedValue(0.0)),
'nil_g3': Condition(domain='g3', equation=FixedValue(0.0)),
'nil_g4': Condition(domain='g4', equation=FixedValue(0.0)),
'laplace_D': Condition(domain='D', equation=my_laplace),
"nil_g1": Condition(domain="g1", equation=FixedValue(0.0)),
"nil_g2": Condition(domain="g2", equation=FixedValue(0.0)),
"nil_g3": Condition(domain="g3", equation=FixedValue(0.0)),
"nil_g4": Condition(domain="g4", equation=FixedValue(0.0)),
"laplace_D": Condition(domain="D", equation=my_laplace),
}
def poisson_sol(self, pts):
return -(torch.sin(pts.extract(['x']) * torch.pi) *
torch.sin(pts.extract(['y']) * torch.pi))
return -(
torch.sin(pts.extract(["x"]) * torch.pi)
* torch.sin(pts.extract(["y"]) * torch.pi)
)

View File

@@ -2,6 +2,7 @@ from pina.problem import AbstractProblem
from pina import Condition
from pina import Graph
class SupervisedProblem(AbstractProblem):
"""
A problem definition for supervised learning in PINA.
@@ -15,6 +16,7 @@ class SupervisedProblem(AbstractProblem):
>>> output_data = torch.rand((100, 10))
>>> problem = SupervisedProblem(input_data, output_data)
"""
conditions = dict()
output_variables = None
@@ -29,9 +31,7 @@ class SupervisedProblem(AbstractProblem):
"""
if isinstance(input_, Graph):
input_ = input_.data
self.conditions['data'] = Condition(
input_points=input_,
output_points = output_
self.conditions["data"] = Condition(
input_points=input_, output_points=output_
)
super().__init__()