Formatting

* Adding black as dev dependency
* Formatting pina code
* Formatting tests
This commit is contained in:
Dario Coscia
2025-02-24 11:26:49 +01:00
committed by Nicola Demo
parent 4c4482b155
commit 42ab1a666b
77 changed files with 1170 additions and 924 deletions

View File

@@ -1,4 +1,4 @@
""" Definition of the diffusion-reaction problem."""
"""Definition of the diffusion-reaction problem."""
import torch
from pina import Condition, LabelTensor
@@ -7,45 +7,57 @@ from pina.equation.equation import Equation
from pina.domain import CartesianDomain
from pina.operator import grad
def diffusion_reaction(input_, output_):
"""
Implementation of the diffusion-reaction equation.
"""
x = input_.extract('x')
t = input_.extract('t')
u_t = grad(output_, input_, d='t')
u_x = grad(output_, input_, d='x')
u_xx = grad(u_x, input_, d='x')
r = torch.exp(-t) * (1.5 * torch.sin(2*x) + (8/3) * torch.sin(3*x) +
(15/4) * torch.sin(4*x) + (63/8) * torch.sin(8*x))
x = input_.extract("x")
t = input_.extract("t")
u_t = grad(output_, input_, d="t")
u_x = grad(output_, input_, d="x")
u_xx = grad(u_x, input_, d="x")
r = torch.exp(-t) * (
1.5 * torch.sin(2 * x)
+ (8 / 3) * torch.sin(3 * x)
+ (15 / 4) * torch.sin(4 * x)
+ (63 / 8) * torch.sin(8 * x)
)
return u_t - u_xx - r
class InverseDiffusionReactionProblem(TimeDependentProblem,
SpatialProblem,
InverseProblem):
class InverseDiffusionReactionProblem(
TimeDependentProblem, SpatialProblem, InverseProblem
):
"""
Implementation of the diffusion-reaction inverse problem on the spatial
interval [-pi, pi] and temporal interval [0,1], with unknown parameters
Implementation of the diffusion-reaction inverse problem on the spatial
interval [-pi, pi] and temporal interval [0,1], with unknown parameters
in the interval [-1,1].
"""
output_variables = ['u']
spatial_domain = CartesianDomain({'x': [-torch.pi, torch.pi]})
temporal_domain = CartesianDomain({'t': [0, 1]})
unknown_parameter_domain = CartesianDomain({'mu': [-1, 1]})
output_variables = ["u"]
spatial_domain = CartesianDomain({"x": [-torch.pi, torch.pi]})
temporal_domain = CartesianDomain({"t": [0, 1]})
unknown_parameter_domain = CartesianDomain({"mu": [-1, 1]})
conditions = {
'D': Condition(
domain=CartesianDomain({'x': [-torch.pi, torch.pi], 't': [0, 1]}),
equation=Equation(diffusion_reaction)),
'data' : Condition(
input_points=LabelTensor(torch.randn(10, 2), ['x', 't']),
output_points=LabelTensor(torch.randn(10, 1), ['u'])),
"D": Condition(
domain=CartesianDomain({"x": [-torch.pi, torch.pi], "t": [0, 1]}),
equation=Equation(diffusion_reaction),
),
"data": Condition(
input_points=LabelTensor(torch.randn(10, 2), ["x", "t"]),
output_points=LabelTensor(torch.randn(10, 1), ["u"]),
),
}
def _solution(self, pts):
t = pts.extract('t')
x = pts.extract('x')
t = pts.extract("t")
x = pts.extract("x")
return torch.exp(-t) * (
torch.sin(x) + (1/2)*torch.sin(2*x) + (1/3)*torch.sin(3*x) +
(1/4)*torch.sin(4*x) + (1/8)*torch.sin(8*x)
torch.sin(x)
+ (1 / 2) * torch.sin(2 * x)
+ (1 / 3) * torch.sin(3 * x)
+ (1 / 4) * torch.sin(4 * x)
+ (1 / 8) * torch.sin(8 * x)
)