Formatting

* Adding black as dev dependency
* Formatting pina code
* Formatting tests
This commit is contained in:
Dario Coscia
2025-02-24 11:26:49 +01:00
committed by Nicola Demo
parent 4c4482b155
commit 42ab1a666b
77 changed files with 1170 additions and 924 deletions

View File

@@ -1,4 +1,4 @@
""" Definition of the Poisson problem on a square domain."""
"""Definition of the Poisson problem on a square domain."""
from pina.problem import SpatialProblem
from pina.operator import laplacian
@@ -8,41 +8,47 @@ from pina.equation.equation import Equation
from pina.equation.equation_factory import FixedValue
import torch
def laplace_equation(input_, output_):
"""
Implementation of the laplace equation.
"""
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
torch.sin(input_.extract(['y']) * torch.pi))
delta_u = laplacian(output_.extract(['u']), input_)
force_term = torch.sin(input_.extract(["x"]) * torch.pi) * torch.sin(
input_.extract(["y"]) * torch.pi
)
delta_u = laplacian(output_.extract(["u"]), input_)
return delta_u - force_term
my_laplace = Equation(laplace_equation)
class Poisson2DSquareProblem(SpatialProblem):
"""
Implementation of the 2-dimensional Poisson problem on a square domain.
"""
output_variables = ['u']
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
output_variables = ["u"]
spatial_domain = CartesianDomain({"x": [0, 1], "y": [0, 1]})
domains = {
'D': CartesianDomain({'x': [0, 1], 'y': [0, 1]}),
'g1': CartesianDomain({'x': [0, 1], 'y': 1}),
'g2': CartesianDomain({'x': [0, 1], 'y': 0}),
'g3': CartesianDomain({'x': 1, 'y': [0, 1]}),
'g4': CartesianDomain({'x': 0, 'y': [0, 1]}),
"D": CartesianDomain({"x": [0, 1], "y": [0, 1]}),
"g1": CartesianDomain({"x": [0, 1], "y": 1}),
"g2": CartesianDomain({"x": [0, 1], "y": 0}),
"g3": CartesianDomain({"x": 1, "y": [0, 1]}),
"g4": CartesianDomain({"x": 0, "y": [0, 1]}),
}
conditions = {
'nil_g1': Condition(domain='g1', equation=FixedValue(0.0)),
'nil_g2': Condition(domain='g2', equation=FixedValue(0.0)),
'nil_g3': Condition(domain='g3', equation=FixedValue(0.0)),
'nil_g4': Condition(domain='g4', equation=FixedValue(0.0)),
'laplace_D': Condition(domain='D', equation=my_laplace),
"nil_g1": Condition(domain="g1", equation=FixedValue(0.0)),
"nil_g2": Condition(domain="g2", equation=FixedValue(0.0)),
"nil_g3": Condition(domain="g3", equation=FixedValue(0.0)),
"nil_g4": Condition(domain="g4", equation=FixedValue(0.0)),
"laplace_D": Condition(domain="D", equation=my_laplace),
}
def poisson_sol(self, pts):
return -(torch.sin(pts.extract(['x']) * torch.pi) *
torch.sin(pts.extract(['y']) * torch.pi))
return -(
torch.sin(pts.extract(["x"]) * torch.pi)
* torch.sin(pts.extract(["y"]) * torch.pi)
)