Formatting

* Adding black as dev dependency
* Formatting pina code
* Formatting tests
This commit is contained in:
Dario Coscia
2025-02-24 11:26:49 +01:00
committed by Nicola Demo
parent 4c4482b155
commit 42ab1a666b
77 changed files with 1170 additions and 924 deletions

View File

@@ -1,4 +1,4 @@
""" Module for Gradient PINN. """
"""Module for Gradient PINN."""
import torch
@@ -59,18 +59,20 @@ class GradientPINN(PINN):
class.
"""
def __init__(self,
problem,
model,
optimizer=None,
scheduler=None,
weighting=None,
loss=None):
def __init__(
self,
problem,
model,
optimizer=None,
scheduler=None,
weighting=None,
loss=None,
):
"""
:param torch.nn.Module model: The neural network model to use.
:param AbstractProblem problem: The formulation of the problem. It must
inherit from at least
:class:`~pina.problem.spatial_problem.SpatialProblem` to compute
:class:`~pina.problem.spatial_problem.SpatialProblem` to compute
the gradient of the loss.
:param torch.optim.Optimizer optimizer: The neural network optimizer to
use; default `None`.
@@ -81,12 +83,14 @@ class GradientPINN(PINN):
:param torch.nn.Module loss: The loss function to be minimized;
default `None`.
"""
super().__init__(model=model,
problem=problem,
optimizer=optimizer,
scheduler=scheduler,
weighting=weighting,
loss=loss)
super().__init__(
model=model,
problem=problem,
optimizer=optimizer,
scheduler=scheduler,
weighting=weighting,
loss=loss,
)
if not isinstance(self.problem, SpatialProblem):
raise ValueError(