Add Averaging Neural Operator with tests and a tutorial (#230)
* add Averaging Neural Operator with tests * add backward test * minor changes * doc addition --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local>
This commit is contained in:
62
tests/test_model/test_avno.py
Normal file
62
tests/test_model/test_avno.py
Normal file
@@ -0,0 +1,62 @@
|
||||
import torch
|
||||
from pina.model import AveragingNeuralOperator
|
||||
from pina import LabelTensor
|
||||
|
||||
output_numb_fields = 5
|
||||
batch_size = 15
|
||||
|
||||
|
||||
def test_constructor():
|
||||
input_numb_fields = 1
|
||||
output_numb_fields = 1
|
||||
#minimuum constructor
|
||||
AveragingNeuralOperator(input_numb_fields,
|
||||
output_numb_fields,
|
||||
coordinates_indices=['p'],
|
||||
field_indices=['v'])
|
||||
|
||||
#all constructor
|
||||
AveragingNeuralOperator(input_numb_fields,
|
||||
output_numb_fields,
|
||||
inner_size=5,
|
||||
n_layers=5,
|
||||
func=torch.nn.ReLU,
|
||||
coordinates_indices=['p'],
|
||||
field_indices=['v'])
|
||||
|
||||
|
||||
def test_forward():
|
||||
input_numb_fields = 1
|
||||
output_numb_fields = 1
|
||||
dimension = 1
|
||||
input_ = LabelTensor(
|
||||
torch.rand(batch_size, 1000, input_numb_fields + dimension), ['p', 'v'])
|
||||
ano = AveragingNeuralOperator(input_numb_fields,
|
||||
output_numb_fields,
|
||||
dimension=dimension,
|
||||
coordinates_indices=['p'],
|
||||
field_indices=['v'])
|
||||
out = ano(input_)
|
||||
assert out.shape == torch.Size(
|
||||
[batch_size, input_.shape[1], output_numb_fields])
|
||||
|
||||
|
||||
def test_backward():
|
||||
input_numb_fields = 1
|
||||
dimension = 1
|
||||
output_numb_fields = 1
|
||||
input_ = LabelTensor(
|
||||
torch.rand(batch_size, 1000, dimension + input_numb_fields),
|
||||
['p', 'v'])
|
||||
input_ = input_.requires_grad_()
|
||||
avno = AveragingNeuralOperator(input_numb_fields,
|
||||
output_numb_fields,
|
||||
dimension=dimension,
|
||||
coordinates_indices=['p'],
|
||||
field_indices=['v'])
|
||||
out = avno(input_)
|
||||
tmp = torch.linalg.norm(out)
|
||||
tmp.backward()
|
||||
grad = input_.grad
|
||||
assert grad.shape == torch.Size(
|
||||
[batch_size, input_.shape[1], dimension + input_numb_fields])
|
||||
Reference in New Issue
Block a user