update doc
This commit is contained in:
committed by
FilippoOlivo
parent
ae1fd2680f
commit
480140dd31
@@ -15,6 +15,7 @@ class BaseContinuousConv(torch.nn.Module, metaclass=ABCMeta):
|
||||
batch_size, :math:`N_{in}` is the number of input fields, :math:`N`
|
||||
the number of points in the mesh, :math:`D` the dimension of the problem.
|
||||
In particular:
|
||||
|
||||
* :math:`D` is the number of spatial variables + 1. The last column must
|
||||
contain the field value.
|
||||
* :math:`N_{in}` represents the number of function components.
|
||||
|
||||
@@ -15,10 +15,13 @@ class ContinuousConvBlock(BaseContinuousConv):
|
||||
batch_size, :math:`N_{in}` is the number of input fields, :math:`N`
|
||||
the number of points in the mesh, :math:`D` the dimension of the problem.
|
||||
In particular:
|
||||
|
||||
* :math:`D` is the number of spatial variables + 1. The last column must
|
||||
contain the field value.
|
||||
* :math:`N_{in}` represents the number of function components.
|
||||
For instance, a vectorial function :math:`f = [f_1, f_2]` has
|
||||
contain the field value. For example for 2D problems :math:`D=3` and
|
||||
the tensor will be something like ``[first coordinate, second
|
||||
coordinate, field value]``.
|
||||
* :math:`N_{in}` represents the number of vectorial function presented.
|
||||
For example a vectorial function :math:`f = [f_1, f_2]` will have
|
||||
:math:`N_{in}=2`.
|
||||
|
||||
.. seealso::
|
||||
|
||||
@@ -412,7 +412,8 @@ class DeepONet(MIONet):
|
||||
Differently, for a :class:`torch.Tensor` only a list of integers can
|
||||
be passed for ``input_indeces_branch_net`` and
|
||||
``input_indeces_trunk_net``.
|
||||
.. warning::
|
||||
|
||||
.. warning::
|
||||
No checks are performed in the forward pass to verify if the input
|
||||
is instance of either :class:`~pina.label_tensor.LabelTensor` or
|
||||
:class:`torch.Tensor`. In general, in case of a
|
||||
|
||||
@@ -36,7 +36,7 @@ class FeedForward(torch.nn.Module):
|
||||
:param int inner_size: The number of neurons for each hidden layer.
|
||||
Default is ``20``.
|
||||
:param int n_layers: The number of hidden layers. Default is ``2``.
|
||||
::param func: The activation function. If a list is passed, it must have
|
||||
:param func: The activation function. If a list is passed, it must have
|
||||
the same length as ``n_layers``. If a single function is passed, it
|
||||
is used for all layers, except for the last one.
|
||||
Default is :class:`torch.nn.Tanh`.
|
||||
@@ -144,7 +144,7 @@ class ResidualFeedForward(torch.nn.Module):
|
||||
:param int inner_size: The number of neurons for each hidden layer.
|
||||
Default is ``20``.
|
||||
:param int n_layers: The number of hidden layers. Default is ``2``.
|
||||
::param func: The activation function. If a list is passed, it must have
|
||||
:param func: The activation function. If a list is passed, it must have
|
||||
the same length as ``n_layers``. If a single function is passed, it
|
||||
is used for all layers, except for the last one.
|
||||
Default is :class:`torch.nn.Tanh`.
|
||||
|
||||
@@ -274,7 +274,7 @@ class FNO(KernelNeuralOperator):
|
||||
layers=None,
|
||||
):
|
||||
"""
|
||||
param torch.nn.Module lifting_net: The lifting neural network mapping
|
||||
:param torch.nn.Module lifting_net: The lifting neural network mapping
|
||||
the input to its hidden dimension.
|
||||
:param torch.nn.Module projecting_net: The projection neural network
|
||||
mapping the hidden representation to the output function.
|
||||
@@ -318,22 +318,24 @@ class FNO(KernelNeuralOperator):
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass for the :class:`FourierNeuralOperator` model.
|
||||
Forward pass for the :class:`FourierNeuralOperator` model.
|
||||
|
||||
The ``lifting_net`` maps the input to the hidden dimension.
|
||||
Then, several layers of Fourier blocks are applied. Finally, the
|
||||
``projection_net`` maps the hidden representation to the output
|
||||
function.
|
||||
The ``lifting_net`` maps the input to the hidden dimension.
|
||||
Then, several layers of Fourier blocks are applied. Finally, the
|
||||
``projection_net`` maps the hidden representation to the output
|
||||
function.
|
||||
|
||||
: param x: The input tensor for performing the computation. Depending
|
||||
on the ``dimensions`` in the initialization, it expects a tensor
|
||||
with the following shapes:
|
||||
* 1D tensors: ``[batch, X, channels]``
|
||||
* 2D tensors: ``[batch, X, Y, channels]``
|
||||
* 3D tensors: ``[batch, X, Y, Z, channels]``
|
||||
:type x: torch.Tensor | LabelTensor
|
||||
:return: The output tensor.
|
||||
:rtype: torch.Tensor
|
||||
:param x: The input tensor for performing the computation. Depending
|
||||
on the ``dimensions`` in the initialization, it expects a tensor
|
||||
with the following shapes:
|
||||
|
||||
* 1D tensors: ``[batch, X, channels]``
|
||||
* 2D tensors: ``[batch, X, Y, channels]``
|
||||
* 3D tensors: ``[batch, X, Y, Z, channels]``
|
||||
|
||||
:type x: torch.Tensor | LabelTensor
|
||||
:return: The output tensor.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
|
||||
if isinstance(x, LabelTensor):
|
||||
|
||||
@@ -8,9 +8,9 @@ from .kernel_neural_operator import KernelNeuralOperator
|
||||
|
||||
class GraphNeuralKernel(torch.nn.Module):
|
||||
"""
|
||||
Graph Neural Kernel model class.
|
||||
Graph Neural Operator kernel model class.
|
||||
|
||||
This class implements the Graph Neural Kernel network.
|
||||
This class implements the Graph Neural Operator kernel network.
|
||||
|
||||
.. seealso::
|
||||
|
||||
@@ -18,8 +18,7 @@ class GraphNeuralKernel(torch.nn.Module):
|
||||
Liu, B., Bhattacharya, K., Stuart, A., Anandkumar, A. (2020).
|
||||
*Neural Operator: Graph Kernel Network for Partial Differential
|
||||
Equations*.
|
||||
DOI: `arXiv preprint arXiv:2003.03485.
|
||||
<https://arxiv.org/abs/2003.03485>`_
|
||||
DOI: `arXiv preprint arXiv:2003.03485 <https://arxiv.org/abs/2003.03485>`_
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@@ -171,7 +170,7 @@ class GraphNeuralOperator(KernelNeuralOperator):
|
||||
"""
|
||||
Initialization of the :class:`GraphNeuralOperator` class.
|
||||
|
||||
param torch.nn.Module lifting_operator: The lifting neural network
|
||||
:param torch.nn.Module lifting_operator: The lifting neural network
|
||||
mapping the input to its hidden dimension.
|
||||
:param torch.nn.Module projection_operator: The projection neural
|
||||
network mapping the hidden representation to the output function.
|
||||
|
||||
Reference in New Issue
Block a user