fix Supervised/PINN solvers forward + fix tut5

This commit is contained in:
Dario Coscia
2023-11-09 11:24:00 +01:00
committed by Nicola Demo
parent 4977d55507
commit 4844640727
6 changed files with 123 additions and 79 deletions

View File

@@ -44,8 +44,8 @@ taken from the authors original reference.
data = io.loadmat("Data_Darcy.mat")
# extract data (we use only 100 data for train)
k_train = torch.tensor(data['k_train'], dtype=torch.float).unsqueeze(-1)[:100, ...]
u_train = torch.tensor(data['u_train'], dtype=torch.float).unsqueeze(-1)[:100, ...]
k_train = torch.tensor(data['k_train'], dtype=torch.float).unsqueeze(-1)
u_train = torch.tensor(data['u_train'], dtype=torch.float).unsqueeze(-1)
k_test = torch.tensor(data['k_test'], dtype=torch.float).unsqueeze(-1)
u_test= torch.tensor(data['u_test'], dtype=torch.float).unsqueeze(-1)
x = torch.tensor(data['x'], dtype=torch.float)[0]
@@ -77,7 +77,7 @@ inheriting from ``AbstractProblem``.
input_variables = ['u_0']
output_variables = ['u']
conditions = {'data' : Condition(input_points=LabelTensor(k_train, input_variables),
output_points=LabelTensor(u_train, input_variables))}
output_points=LabelTensor(u_train, output_variables))}
# make problem
problem = NeuralOperatorSolver()
@@ -99,7 +99,7 @@ training using supervised learning.
solver = SupervisedSolver(problem=problem, model=model)
# make the trainer and train
trainer = Trainer(solver=solver, max_epochs=100, accelerator='cpu', enable_model_summary=False) # we train on CPU and avoid model summary at beginning of training (optional)
trainer = Trainer(solver=solver, max_epochs=10, accelerator='cpu', enable_model_summary=False, batch_size=10) # we train on CPU and avoid model summary at beginning of training (optional)
trainer.train()
@@ -112,15 +112,18 @@ training using supervised learning.
HPU available: False, using: 0 HPUs
.. parsed-literal::
Epoch 9: : 100it [00:00, 383.36it/s, v_num=36, mean_loss=0.108]
.. parsed-literal::
Training: 0it [00:00, ?it/s]
`Trainer.fit` stopped: `max_epochs=10` reached.
.. parsed-literal::
`Trainer.fit` stopped: `max_epochs=100` reached.
Epoch 9: : 100it [00:00, 380.57it/s, v_num=36, mean_loss=0.108]
The final loss is pretty high… We can calculate the error by importing
@@ -143,8 +146,8 @@ The final loss is pretty high… We can calculate the error by importing
.. parsed-literal::
Final error training 56.24%
Final error testing 55.95%
Final error training 56.04%
Final error testing 56.01%
Solving the problem with a Fuorier Neural Operator (FNO)
@@ -170,7 +173,7 @@ operator this approach is better suited, as we shall see.
solver = SupervisedSolver(problem=problem, model=model)
# make the trainer and train
trainer = Trainer(solver=solver, max_epochs=100, accelerator='cpu', enable_model_summary=False) # we train on CPU and avoid model summary at beginning of training (optional)
trainer = Trainer(solver=solver, max_epochs=10, accelerator='cpu', enable_model_summary=False, batch_size=10) # we train on CPU and avoid model summary at beginning of training (optional)
trainer.train()
@@ -183,15 +186,18 @@ operator this approach is better suited, as we shall see.
HPU available: False, using: 0 HPUs
.. parsed-literal::
Epoch 9: : 100it [00:04, 22.13it/s, v_num=37, mean_loss=0.000952]
.. parsed-literal::
Training: 0it [00:00, ?it/s]
`Trainer.fit` stopped: `max_epochs=10` reached.
.. parsed-literal::
`Trainer.fit` stopped: `max_epochs=100` reached.
Epoch 9: : 100it [00:04, 22.07it/s, v_num=37, mean_loss=0.000952]
We can clearly see that the final loss is lower. Lets see in testing..
@@ -210,8 +216,8 @@ training, when many data samples are used.
.. parsed-literal::
Final error training 10.86%
Final error testing 12.77%
Final error training 4.45%
Final error testing 4.91%
As we can see the loss is way lower!

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

After

Width:  |  Height:  |  Size: 15 KiB