fix Supervised/PINN solvers forward + fix tut5

This commit is contained in:
Dario Coscia
2023-11-09 11:24:00 +01:00
committed by Nicola Demo
parent 4977d55507
commit 4844640727
6 changed files with 123 additions and 79 deletions

View File

@@ -44,8 +44,8 @@ taken from the authors original reference.
data = io.loadmat("Data_Darcy.mat") data = io.loadmat("Data_Darcy.mat")
# extract data (we use only 100 data for train) # extract data (we use only 100 data for train)
k_train = torch.tensor(data['k_train'], dtype=torch.float).unsqueeze(-1)[:100, ...] k_train = torch.tensor(data['k_train'], dtype=torch.float).unsqueeze(-1)
u_train = torch.tensor(data['u_train'], dtype=torch.float).unsqueeze(-1)[:100, ...] u_train = torch.tensor(data['u_train'], dtype=torch.float).unsqueeze(-1)
k_test = torch.tensor(data['k_test'], dtype=torch.float).unsqueeze(-1) k_test = torch.tensor(data['k_test'], dtype=torch.float).unsqueeze(-1)
u_test= torch.tensor(data['u_test'], dtype=torch.float).unsqueeze(-1) u_test= torch.tensor(data['u_test'], dtype=torch.float).unsqueeze(-1)
x = torch.tensor(data['x'], dtype=torch.float)[0] x = torch.tensor(data['x'], dtype=torch.float)[0]
@@ -77,7 +77,7 @@ inheriting from ``AbstractProblem``.
input_variables = ['u_0'] input_variables = ['u_0']
output_variables = ['u'] output_variables = ['u']
conditions = {'data' : Condition(input_points=LabelTensor(k_train, input_variables), conditions = {'data' : Condition(input_points=LabelTensor(k_train, input_variables),
output_points=LabelTensor(u_train, input_variables))} output_points=LabelTensor(u_train, output_variables))}
# make problem # make problem
problem = NeuralOperatorSolver() problem = NeuralOperatorSolver()
@@ -99,7 +99,7 @@ training using supervised learning.
solver = SupervisedSolver(problem=problem, model=model) solver = SupervisedSolver(problem=problem, model=model)
# make the trainer and train # make the trainer and train
trainer = Trainer(solver=solver, max_epochs=100, accelerator='cpu', enable_model_summary=False) # we train on CPU and avoid model summary at beginning of training (optional) trainer = Trainer(solver=solver, max_epochs=10, accelerator='cpu', enable_model_summary=False, batch_size=10) # we train on CPU and avoid model summary at beginning of training (optional)
trainer.train() trainer.train()
@@ -112,15 +112,18 @@ training using supervised learning.
HPU available: False, using: 0 HPUs HPU available: False, using: 0 HPUs
.. parsed-literal::
Epoch 9: : 100it [00:00, 383.36it/s, v_num=36, mean_loss=0.108]
.. parsed-literal:: .. parsed-literal::
Training: 0it [00:00, ?it/s] `Trainer.fit` stopped: `max_epochs=10` reached.
.. parsed-literal:: .. parsed-literal::
`Trainer.fit` stopped: `max_epochs=100` reached. Epoch 9: : 100it [00:00, 380.57it/s, v_num=36, mean_loss=0.108]
The final loss is pretty high… We can calculate the error by importing The final loss is pretty high… We can calculate the error by importing
@@ -143,8 +146,8 @@ The final loss is pretty high… We can calculate the error by importing
.. parsed-literal:: .. parsed-literal::
Final error training 56.24% Final error training 56.04%
Final error testing 55.95% Final error testing 56.01%
Solving the problem with a Fuorier Neural Operator (FNO) Solving the problem with a Fuorier Neural Operator (FNO)
@@ -170,7 +173,7 @@ operator this approach is better suited, as we shall see.
solver = SupervisedSolver(problem=problem, model=model) solver = SupervisedSolver(problem=problem, model=model)
# make the trainer and train # make the trainer and train
trainer = Trainer(solver=solver, max_epochs=100, accelerator='cpu', enable_model_summary=False) # we train on CPU and avoid model summary at beginning of training (optional) trainer = Trainer(solver=solver, max_epochs=10, accelerator='cpu', enable_model_summary=False, batch_size=10) # we train on CPU and avoid model summary at beginning of training (optional)
trainer.train() trainer.train()
@@ -183,15 +186,18 @@ operator this approach is better suited, as we shall see.
HPU available: False, using: 0 HPUs HPU available: False, using: 0 HPUs
.. parsed-literal::
Epoch 9: : 100it [00:04, 22.13it/s, v_num=37, mean_loss=0.000952]
.. parsed-literal:: .. parsed-literal::
Training: 0it [00:00, ?it/s] `Trainer.fit` stopped: `max_epochs=10` reached.
.. parsed-literal:: .. parsed-literal::
`Trainer.fit` stopped: `max_epochs=100` reached. Epoch 9: : 100it [00:04, 22.07it/s, v_num=37, mean_loss=0.000952]
We can clearly see that the final loss is lower. Lets see in testing.. We can clearly see that the final loss is lower. Lets see in testing..
@@ -210,8 +216,8 @@ training, when many data samples are used.
.. parsed-literal:: .. parsed-literal::
Final error training 10.86% Final error training 4.45%
Final error testing 12.77% Final error testing 4.91%
As we can see the loss is way lower! As we can see the loss is way lower!

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

After

Width:  |  Height:  |  Size: 15 KiB

View File

@@ -83,11 +83,11 @@ class PINN(SolverInterface):
:return: PINN solution. :return: PINN solution.
:rtype: torch.Tensor :rtype: torch.Tensor
""" """
# extract labels # extract torch.Tensor from corresponding label
x = x.extract(self.problem.input_variables) x = x.extract(self.problem.input_variables).as_subclass(torch.Tensor)
# perform forward pass # perform forward pass (using torch.Tensor) + converting to LabelTensor
output = self.neural_net(x).as_subclass(LabelTensor) output = self.neural_net(x).as_subclass(LabelTensor)
# set the labels # set the labels for LabelTensor
output.labels = self.problem.output_variables output.labels = self.problem.output_variables
return output return output

View File

@@ -72,11 +72,11 @@ class SupervisedSolver(SolverInterface):
:return: Solver solution. :return: Solver solution.
:rtype: torch.Tensor :rtype: torch.Tensor
""" """
# extract labels # extract torch.Tensor from corresponding label
x = x.extract(self.problem.input_variables) x = x.extract(self.problem.input_variables).as_subclass(torch.Tensor)
# perform forward pass # perform forward pass (using torch.Tensor) + converting to LabelTensor
output = self.neural_net(x).as_subclass(LabelTensor) output = self.neural_net(x).as_subclass(LabelTensor)
# set the labels # set the labels for LabelTensor
output.labels = self.problem.output_variables output.labels = self.problem.output_variables
return output return output
@@ -99,6 +99,44 @@ class SupervisedSolver(SolverInterface):
:rtype: LabelTensor :rtype: LabelTensor
""" """
dataloader = self.trainer.train_dataloader
condition_idx = batch['condition']
for condition_id in range(condition_idx.min(), condition_idx.max()+1):
condition_name = dataloader.condition_names[condition_id]
condition = self.problem.conditions[condition_name]
pts = batch['pts']
out = batch['output']
if condition_name not in self.problem.conditions:
raise RuntimeError('Something wrong happened.')
# for data driven mode
if not hasattr(condition, 'output_points'):
raise NotImplementedError('Supervised solver works only in data-driven mode.')
output_pts = out[condition_idx == condition_id]
input_pts = pts[condition_idx == condition_id]
loss = self.loss(self.forward(input_pts), output_pts) * condition.data_weight
loss = loss.as_subclass(torch.Tensor)
self.log('mean_loss', float(loss), prog_bar=True, logger=True)
return loss
def training_step_(self, batch, batch_idx):
"""Solver training step.
:param batch: The batch element in the dataloader.
:type batch: tuple
:param batch_idx: The batch index.
:type batch_idx: int
:return: The sum of the loss functions.
:rtype: LabelTensor
"""
for condition_name, samples in batch.items(): for condition_name, samples in batch.items():
if condition_name not in self.problem.conditions: if condition_name not in self.problem.conditions:

File diff suppressed because one or more lines are too long

View File

@@ -6,7 +6,7 @@
# In this tutorial we are going to solve the Darcy flow problem in two dimensions, presented in [*Fourier Neural Operator for # In this tutorial we are going to solve the Darcy flow problem in two dimensions, presented in [*Fourier Neural Operator for
# Parametric Partial Differential Equation*](https://openreview.net/pdf?id=c8P9NQVtmnO). First of all we import the modules needed for the tutorial. Importing `scipy` is needed for input output operations. # Parametric Partial Differential Equation*](https://openreview.net/pdf?id=c8P9NQVtmnO). First of all we import the modules needed for the tutorial. Importing `scipy` is needed for input output operations.
# In[1]: # In[11]:
# !pip install scipy # install scipy # !pip install scipy # install scipy
@@ -32,15 +32,15 @@ import matplotlib.pyplot as plt
# Specifically, $u$ is the flow pressure, $k$ is the permeability field and $f$ is the forcing function. The Darcy flow can parameterize a variety of systems including flow through porous media, elastic materials and heat conduction. Here you will define the domain as a 2D unit square Dirichlet boundary conditions. The dataset is taken from the authors original reference. # Specifically, $u$ is the flow pressure, $k$ is the permeability field and $f$ is the forcing function. The Darcy flow can parameterize a variety of systems including flow through porous media, elastic materials and heat conduction. Here you will define the domain as a 2D unit square Dirichlet boundary conditions. The dataset is taken from the authors original reference.
# #
# In[17]: # In[12]:
# download the dataset # download the dataset
data = io.loadmat("Data_Darcy.mat") data = io.loadmat("Data_Darcy.mat")
# extract data (we use only 100 data for train) # extract data (we use only 100 data for train)
k_train = torch.tensor(data['k_train'], dtype=torch.float).unsqueeze(-1)[:100, ...] k_train = torch.tensor(data['k_train'], dtype=torch.float).unsqueeze(-1)
u_train = torch.tensor(data['u_train'], dtype=torch.float).unsqueeze(-1)[:100, ...] u_train = torch.tensor(data['u_train'], dtype=torch.float).unsqueeze(-1)
k_test = torch.tensor(data['k_test'], dtype=torch.float).unsqueeze(-1) k_test = torch.tensor(data['k_test'], dtype=torch.float).unsqueeze(-1)
u_test= torch.tensor(data['u_test'], dtype=torch.float).unsqueeze(-1) u_test= torch.tensor(data['u_test'], dtype=torch.float).unsqueeze(-1)
x = torch.tensor(data['x'], dtype=torch.float)[0] x = torch.tensor(data['x'], dtype=torch.float)[0]
@@ -49,7 +49,7 @@ y = torch.tensor(data['y'], dtype=torch.float)[0]
# Let's visualize some data # Let's visualize some data
# In[18]: # In[13]:
plt.subplot(1, 2, 1) plt.subplot(1, 2, 1)
@@ -63,14 +63,14 @@ plt.show()
# We now create the neural operator class. It is a very simple class, inheriting from `AbstractProblem`. # We now create the neural operator class. It is a very simple class, inheriting from `AbstractProblem`.
# In[19]: # In[14]:
class NeuralOperatorSolver(AbstractProblem): class NeuralOperatorSolver(AbstractProblem):
input_variables = ['u_0'] input_variables = ['u_0']
output_variables = ['u'] output_variables = ['u']
conditions = {'data' : Condition(input_points=LabelTensor(k_train, input_variables), conditions = {'data' : Condition(input_points=LabelTensor(k_train, input_variables),
output_points=LabelTensor(u_train, input_variables))} output_points=LabelTensor(u_train, output_variables))}
# make problem # make problem
problem = NeuralOperatorSolver() problem = NeuralOperatorSolver()
@@ -80,7 +80,7 @@ problem = NeuralOperatorSolver()
# #
# We will first solve the problem using a Feedforward neural network. We will use the `SupervisedSolver` for solving the problem, since we are training using supervised learning. # We will first solve the problem using a Feedforward neural network. We will use the `SupervisedSolver` for solving the problem, since we are training using supervised learning.
# In[20]: # In[15]:
# make model # make model
@@ -91,13 +91,13 @@ model = FeedForward(input_dimensions=1, output_dimensions=1)
solver = SupervisedSolver(problem=problem, model=model) solver = SupervisedSolver(problem=problem, model=model)
# make the trainer and train # make the trainer and train
trainer = Trainer(solver=solver, max_epochs=100, accelerator='cpu', enable_model_summary=False) # we train on CPU and avoid model summary at beginning of training (optional) trainer = Trainer(solver=solver, max_epochs=10, accelerator='cpu', enable_model_summary=False, batch_size=10) # we train on CPU and avoid model summary at beginning of training (optional)
trainer.train() trainer.train()
# The final loss is pretty high... We can calculate the error by importing `LpLoss`. # The final loss is pretty high... We can calculate the error by importing `LpLoss`.
# In[21]: # In[16]:
from pina.loss import LpLoss from pina.loss import LpLoss
@@ -117,7 +117,7 @@ print(f'Final error testing {err:.2f}%')
# #
# We will now move to solve the problem using a FNO. Since we are learning operator this approach is better suited, as we shall see. # We will now move to solve the problem using a FNO. Since we are learning operator this approach is better suited, as we shall see.
# In[22]: # In[17]:
# make model # make model
@@ -135,13 +135,13 @@ model = FNO(lifting_net=lifting_net,
solver = SupervisedSolver(problem=problem, model=model) solver = SupervisedSolver(problem=problem, model=model)
# make the trainer and train # make the trainer and train
trainer = Trainer(solver=solver, max_epochs=100, accelerator='cpu', enable_model_summary=False) # we train on CPU and avoid model summary at beginning of training (optional) trainer = Trainer(solver=solver, max_epochs=10, accelerator='cpu', enable_model_summary=False, batch_size=10) # we train on CPU and avoid model summary at beginning of training (optional)
trainer.train() trainer.train()
# We can clearly see that the final loss is lower. Let's see in testing.. Notice that the number of parameters is way higher than a `FeedForward` network. We suggest to use GPU or TPU for a speed up in training, when many data samples are used. # We can clearly see that the final loss is lower. Let's see in testing.. Notice that the number of parameters is way higher than a `FeedForward` network. We suggest to use GPU or TPU for a speed up in training, when many data samples are used.
# In[23]: # In[18]:
err = float(metric_err(u_train.squeeze(-1), solver.models[0](k_train).squeeze(-1)).mean())*100 err = float(metric_err(u_train.squeeze(-1), solver.models[0](k_train).squeeze(-1)).mean())*100