@@ -1,7 +1,7 @@
|
||||
"""Module for Base Continuous Convolution class."""
|
||||
|
||||
import torch
|
||||
import warnings
|
||||
import torch
|
||||
|
||||
|
||||
class PODBlock(torch.nn.Module):
|
||||
@@ -29,9 +29,10 @@ class PODBlock(torch.nn.Module):
|
||||
"""
|
||||
super().__init__()
|
||||
self.__scale_coefficients = scale_coefficients
|
||||
self._basis = None
|
||||
self.register_buffer("_basis", None)
|
||||
self._singular_values = None
|
||||
self._scaler = None
|
||||
self.register_buffer("_std", None)
|
||||
self.register_buffer("_mean", None)
|
||||
self._rank = rank
|
||||
|
||||
@property
|
||||
@@ -94,12 +95,12 @@ class PODBlock(torch.nn.Module):
|
||||
:return: The scaler dictionary.
|
||||
:rtype: dict
|
||||
"""
|
||||
if self._scaler is None:
|
||||
if self._std is None:
|
||||
return None
|
||||
|
||||
return {
|
||||
"mean": self._scaler["mean"][: self.rank],
|
||||
"std": self._scaler["std"][: self.rank],
|
||||
"mean": self._mean[: self.rank],
|
||||
"std": self._std[: self.rank],
|
||||
}
|
||||
|
||||
@property
|
||||
@@ -119,6 +120,10 @@ class PODBlock(torch.nn.Module):
|
||||
are scaled after the projection to have zero mean and unit variance.
|
||||
|
||||
:param torch.Tensor X: The input tensor to be reduced.
|
||||
:param bool randomized: If ``True``, a randomized algorithm is used to
|
||||
compute the POD basis. In general, this leads to faster
|
||||
computations, but the results may be less accurate. Default is
|
||||
``True``.
|
||||
"""
|
||||
self._fit_pod(X, randomized)
|
||||
|
||||
@@ -132,10 +137,8 @@ class PODBlock(torch.nn.Module):
|
||||
|
||||
:param torch.Tensor coeffs: The coefficients to be scaled.
|
||||
"""
|
||||
self._scaler = {
|
||||
"std": torch.std(coeffs, dim=1),
|
||||
"mean": torch.mean(coeffs, dim=1),
|
||||
}
|
||||
self._std = torch.std(coeffs, dim=1) # pylint: disable=W0201
|
||||
self._mean = torch.mean(coeffs, dim=1) # pylint: disable=W0201
|
||||
|
||||
def _fit_pod(self, X, randomized):
|
||||
"""
|
||||
@@ -154,13 +157,14 @@ class PODBlock(torch.nn.Module):
|
||||
else:
|
||||
if randomized:
|
||||
warnings.warn(
|
||||
"Considering a randomized algorithm to compute the POD basis"
|
||||
"Considering a randomized algorithm to compute the POD "
|
||||
"basis"
|
||||
)
|
||||
u, s, _ = torch.svd_lowrank(X.T, q=X.shape[0])
|
||||
|
||||
else:
|
||||
u, s, _ = torch.svd(X.T)
|
||||
self._basis = u.T
|
||||
self._basis = u.T # pylint: disable=W0201
|
||||
self._singular_values = s
|
||||
|
||||
def forward(self, X):
|
||||
|
||||
Reference in New Issue
Block a user