PBC Layer (#252)
* update docs/tests * tutorial and device fix --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local> Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it> Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.lan> Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.Home>
This commit is contained in:
99
tests/test_layers/test_embedding.py
Normal file
99
tests/test_layers/test_embedding.py
Normal file
@@ -0,0 +1,99 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.model.layers import PeriodicBoundaryEmbedding
|
||||
from pina import LabelTensor
|
||||
|
||||
def check_same_columns(tensor):
|
||||
# Get the first column
|
||||
first_column = tensor[0]
|
||||
# Compare each column with the first column
|
||||
all_same = torch.allclose(tensor, first_column)
|
||||
return all_same
|
||||
|
||||
def grad(u, x):
|
||||
"""
|
||||
Compute the first derivative of u with respect to x.
|
||||
"""
|
||||
return torch.autograd.grad(u, x, grad_outputs=torch.ones_like(u),
|
||||
create_graph=True, allow_unused=True,
|
||||
retain_graph=True)[0]
|
||||
|
||||
def test_constructor():
|
||||
PeriodicBoundaryEmbedding(input_dimension=1, periods=2)
|
||||
PeriodicBoundaryEmbedding(input_dimension=1, periods={'x': 3, 'y' : 4})
|
||||
PeriodicBoundaryEmbedding(input_dimension=1, periods={0: 3, 1 : 4})
|
||||
PeriodicBoundaryEmbedding(input_dimension=1, periods=2, output_dimension=10)
|
||||
with pytest.raises(TypeError):
|
||||
PeriodicBoundaryEmbedding()
|
||||
with pytest.raises(ValueError):
|
||||
PeriodicBoundaryEmbedding(input_dimension=1., periods=1)
|
||||
PeriodicBoundaryEmbedding(input_dimension=1, periods=1, output_dimension=1.)
|
||||
PeriodicBoundaryEmbedding(input_dimension=1, periods={'x':'x'})
|
||||
PeriodicBoundaryEmbedding(input_dimension=1, periods={0:'x'})
|
||||
|
||||
|
||||
@pytest.mark.parametrize("period", [1, 4, 10])
|
||||
@pytest.mark.parametrize("input_dimension", [1, 2, 3])
|
||||
def test_forward_same_period(input_dimension, period):
|
||||
func = torch.nn.Sequential(
|
||||
PeriodicBoundaryEmbedding(input_dimension=input_dimension,
|
||||
output_dimension=60, periods=period),
|
||||
torch.nn.Tanh(),
|
||||
torch.nn.Linear(60, 60),
|
||||
torch.nn.Tanh(),
|
||||
torch.nn.Linear(60, 1)
|
||||
)
|
||||
# coordinates
|
||||
x = period * torch.tensor([[0.],[1.]])
|
||||
if input_dimension == 2:
|
||||
x = torch.cartesian_prod(x.flatten(),x.flatten())
|
||||
elif input_dimension == 3:
|
||||
x = torch.cartesian_prod(x.flatten(),x.flatten(),x.flatten())
|
||||
x.requires_grad = True
|
||||
# output
|
||||
f = func(x)
|
||||
assert check_same_columns(f)
|
||||
|
||||
|
||||
|
||||
def test_forward_same_period_labels():
|
||||
func = torch.nn.Sequential(
|
||||
PeriodicBoundaryEmbedding(input_dimension=2,
|
||||
output_dimension=60, periods={'x':1, 'y':2}),
|
||||
torch.nn.Tanh(),
|
||||
torch.nn.Linear(60, 60),
|
||||
torch.nn.Tanh(),
|
||||
torch.nn.Linear(60, 1)
|
||||
)
|
||||
# coordinates
|
||||
tensor = torch.tensor([[0., 0.], [0., 2.], [1., 0.], [1., 2.]])
|
||||
with pytest.raises(RuntimeError):
|
||||
func(tensor)
|
||||
tensor = tensor.as_subclass(LabelTensor)
|
||||
tensor.labels = ['x', 'y']
|
||||
tensor.requires_grad = True
|
||||
# output
|
||||
f = func(tensor)
|
||||
assert check_same_columns(f)
|
||||
|
||||
def test_forward_same_period_index():
|
||||
func = torch.nn.Sequential(
|
||||
PeriodicBoundaryEmbedding(input_dimension=2,
|
||||
output_dimension=60, periods={0:1, 1:2}),
|
||||
torch.nn.Tanh(),
|
||||
torch.nn.Linear(60, 60),
|
||||
torch.nn.Tanh(),
|
||||
torch.nn.Linear(60, 1)
|
||||
)
|
||||
# coordinates
|
||||
tensor = torch.tensor([[0., 0.], [0., 2.], [1., 0.], [1., 2.]])
|
||||
tensor.requires_grad = True
|
||||
# output
|
||||
f = func(tensor)
|
||||
assert check_same_columns(f)
|
||||
tensor = tensor.as_subclass(LabelTensor)
|
||||
tensor.labels = ['x', 'y']
|
||||
# output
|
||||
f = func(tensor)
|
||||
assert check_same_columns(f)
|
||||
Reference in New Issue
Block a user