Update Laplace class and add unit tests (#645)
This commit is contained in:
@@ -2,42 +2,10 @@
|
||||
|
||||
import torch
|
||||
from ... import Condition
|
||||
from ...operator import grad
|
||||
from ...equation import Equation
|
||||
from ...domain import CartesianDomain
|
||||
from ...utils import check_consistency
|
||||
from ...problem import SpatialProblem, TimeDependentProblem
|
||||
|
||||
|
||||
class AdvectionEquation(Equation):
|
||||
"""
|
||||
Implementation of the advection equation.
|
||||
"""
|
||||
|
||||
def __init__(self, c):
|
||||
"""
|
||||
Initialization of the :class:`AdvectionEquation`.
|
||||
|
||||
:param c: The advection velocity parameter.
|
||||
:type c: float | int
|
||||
"""
|
||||
self.c = c
|
||||
check_consistency(self.c, (float, int))
|
||||
|
||||
def equation(input_, output_):
|
||||
"""
|
||||
Implementation of the advection equation.
|
||||
|
||||
:param LabelTensor input_: Input data of the problem.
|
||||
:param LabelTensor output_: Output data of the problem.
|
||||
:return: The residual of the advection equation.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
u_x = grad(output_, input_, components=["u"], d=["x"])
|
||||
u_t = grad(output_, input_, components=["u"], d=["t"])
|
||||
return u_t + self.c * u_x
|
||||
|
||||
super().__init__(equation)
|
||||
from ...equation import Equation, Advection
|
||||
from ...utils import check_consistency
|
||||
from ...domain import CartesianDomain
|
||||
|
||||
|
||||
def initial_condition(input_, output_):
|
||||
@@ -89,13 +57,10 @@ class AdvectionProblem(SpatialProblem, TimeDependentProblem):
|
||||
:type c: float | int
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
check_consistency(c, (float, int))
|
||||
self.c = c
|
||||
check_consistency(self.c, (float, int))
|
||||
|
||||
self.conditions["D"] = Condition(
|
||||
domain="D", equation=AdvectionEquation(self.c)
|
||||
)
|
||||
self.conditions["D"] = Condition(domain="D", equation=Advection(self.c))
|
||||
|
||||
def solution(self, pts):
|
||||
"""
|
||||
|
||||
@@ -2,32 +2,18 @@
|
||||
|
||||
import torch
|
||||
from ... import Condition
|
||||
from ...equation import Equation
|
||||
from ...domain import CartesianDomain
|
||||
from ...operator import grad, laplacian
|
||||
from ...problem import SpatialProblem, TimeDependentProblem
|
||||
|
||||
|
||||
def allen_cahn_equation(input_, output_):
|
||||
"""
|
||||
Implementation of the Allen Cahn equation.
|
||||
|
||||
:param LabelTensor input_: Input data of the problem.
|
||||
:param LabelTensor output_: Output data of the problem.
|
||||
:return: The residual of the Allen Cahn equation.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
u_t = grad(output_, input_, components=["u"], d=["t"])
|
||||
u_xx = laplacian(output_, input_, components=["u"], d=["x"])
|
||||
return u_t - 0.0001 * u_xx + 5 * output_**3 - 5 * output_
|
||||
from ...equation import Equation, AllenCahn
|
||||
from ...utils import check_consistency
|
||||
from ...domain import CartesianDomain
|
||||
|
||||
|
||||
def initial_condition(input_, output_):
|
||||
"""
|
||||
Definition of the initial condition of the Allen Cahn problem.
|
||||
|
||||
:param LabelTensor input_: Input data of the problem.
|
||||
:param LabelTensor output_: Output data of the problem.
|
||||
:param LabelTensor input_: The input data of the problem.
|
||||
:param LabelTensor output_: The output data of the problem.
|
||||
:return: The residual of the initial condition.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
@@ -64,6 +50,25 @@ class AllenCahnProblem(TimeDependentProblem, SpatialProblem):
|
||||
}
|
||||
|
||||
conditions = {
|
||||
"D": Condition(domain="D", equation=Equation(allen_cahn_equation)),
|
||||
"t0": Condition(domain="t0", equation=Equation(initial_condition)),
|
||||
}
|
||||
|
||||
def __init__(self, alpha=1e-4, beta=5):
|
||||
"""
|
||||
Initialization of the :class:`AllenCahnProblem`.
|
||||
|
||||
:param alpha: The diffusion coefficient.
|
||||
:type alpha: float | int
|
||||
:param beta: The reaction coefficient.
|
||||
:type beta: float | int
|
||||
"""
|
||||
super().__init__()
|
||||
check_consistency(alpha, (float, int))
|
||||
check_consistency(beta, (float, int))
|
||||
self.alpha = alpha
|
||||
self.beta = beta
|
||||
|
||||
self.conditions["D"] = Condition(
|
||||
domain="D",
|
||||
equation=AllenCahn(alpha=self.alpha, beta=self.beta),
|
||||
)
|
||||
|
||||
@@ -2,40 +2,18 @@
|
||||
|
||||
import torch
|
||||
from ... import Condition
|
||||
from ...domain import CartesianDomain
|
||||
from ...operator import grad, laplacian
|
||||
from ...equation import Equation, FixedValue
|
||||
from ...equation import Equation, FixedValue, DiffusionReaction
|
||||
from ...problem import SpatialProblem, TimeDependentProblem
|
||||
|
||||
|
||||
def diffusion_reaction(input_, output_):
|
||||
"""
|
||||
Implementation of the diffusion-reaction equation.
|
||||
|
||||
:param LabelTensor input_: Input data of the problem.
|
||||
:param LabelTensor output_: Output data of the problem.
|
||||
:return: The residual of the diffusion-reaction equation.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
x = input_.extract("x")
|
||||
t = input_.extract("t")
|
||||
u_t = grad(output_, input_, components=["u"], d=["t"])
|
||||
u_xx = laplacian(output_, input_, components=["u"], d=["x"])
|
||||
r = torch.exp(-t) * (
|
||||
1.5 * torch.sin(2 * x)
|
||||
+ (8 / 3) * torch.sin(3 * x)
|
||||
+ (15 / 4) * torch.sin(4 * x)
|
||||
+ (63 / 8) * torch.sin(8 * x)
|
||||
)
|
||||
return u_t - u_xx - r
|
||||
from ...utils import check_consistency
|
||||
from ...domain import CartesianDomain
|
||||
|
||||
|
||||
def initial_condition(input_, output_):
|
||||
"""
|
||||
Definition of the initial condition of the diffusion-reaction problem.
|
||||
|
||||
:param LabelTensor input_: Input data of the problem.
|
||||
:param LabelTensor output_: Output data of the problem.
|
||||
:param LabelTensor input_: The input data of the problem.
|
||||
:param LabelTensor output_: The output data of the problem.
|
||||
:return: The residual of the initial condition.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
@@ -76,12 +54,43 @@ class DiffusionReactionProblem(TimeDependentProblem, SpatialProblem):
|
||||
}
|
||||
|
||||
conditions = {
|
||||
"D": Condition(domain="D", equation=Equation(diffusion_reaction)),
|
||||
"g1": Condition(domain="g1", equation=FixedValue(0.0)),
|
||||
"g2": Condition(domain="g2", equation=FixedValue(0.0)),
|
||||
"t0": Condition(domain="t0", equation=Equation(initial_condition)),
|
||||
}
|
||||
|
||||
def __init__(self, alpha=1e-4):
|
||||
"""
|
||||
Initialization of the :class:`DiffusionReactionProblem`.
|
||||
|
||||
:param alpha: The diffusion coefficient.
|
||||
:type alpha: float | int
|
||||
"""
|
||||
super().__init__()
|
||||
check_consistency(alpha, (float, int))
|
||||
self.alpha = alpha
|
||||
|
||||
def forcing_term(input_):
|
||||
"""
|
||||
Implementation of the forcing term.
|
||||
"""
|
||||
# Extract spatial and temporal variables
|
||||
spatial_d = [di for di in input_.labels if di != "t"]
|
||||
x = input_.extract(spatial_d)
|
||||
t = input_.extract("t")
|
||||
|
||||
return torch.exp(-t) * (
|
||||
1.5 * torch.sin(2 * x)
|
||||
+ (8 / 3) * torch.sin(3 * x)
|
||||
+ (15 / 4) * torch.sin(4 * x)
|
||||
+ (63 / 8) * torch.sin(8 * x)
|
||||
)
|
||||
|
||||
self.conditions["D"] = Condition(
|
||||
domain="D",
|
||||
equation=DiffusionReaction(self.alpha, forcing_term),
|
||||
)
|
||||
|
||||
def solution(self, pts):
|
||||
"""
|
||||
Implementation of the analytical solution of the diffusion-reaction
|
||||
|
||||
@@ -2,46 +2,10 @@
|
||||
|
||||
import torch
|
||||
from ... import Condition
|
||||
from ...operator import laplacian
|
||||
from ...equation import FixedValue, Helmholtz
|
||||
from ...utils import check_consistency
|
||||
from ...domain import CartesianDomain
|
||||
from ...problem import SpatialProblem
|
||||
from ...utils import check_consistency
|
||||
from ...equation import Equation, FixedValue
|
||||
|
||||
|
||||
class HelmholtzEquation(Equation):
|
||||
"""
|
||||
Implementation of the Helmholtz equation.
|
||||
"""
|
||||
|
||||
def __init__(self, alpha):
|
||||
"""
|
||||
Initialization of the :class:`HelmholtzEquation` class.
|
||||
|
||||
:param alpha: Parameter of the forcing term.
|
||||
:type alpha: float | int
|
||||
"""
|
||||
self.alpha = alpha
|
||||
check_consistency(alpha, (int, float))
|
||||
|
||||
def equation(input_, output_):
|
||||
"""
|
||||
Implementation of the Helmholtz equation.
|
||||
|
||||
:param LabelTensor input_: Input data of the problem.
|
||||
:param LabelTensor output_: Output data of the problem.
|
||||
:return: The residual of the Helmholtz equation.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
lap = laplacian(output_, input_, components=["u"], d=["x", "y"])
|
||||
q = (
|
||||
(1 - 2 * (self.alpha * torch.pi) ** 2)
|
||||
* torch.sin(self.alpha * torch.pi * input_.extract("x"))
|
||||
* torch.sin(self.alpha * torch.pi * input_.extract("y"))
|
||||
)
|
||||
return lap + output_ - q
|
||||
|
||||
super().__init__(equation)
|
||||
|
||||
|
||||
class HelmholtzProblem(SpatialProblem):
|
||||
@@ -88,8 +52,19 @@ class HelmholtzProblem(SpatialProblem):
|
||||
self.alpha = alpha
|
||||
check_consistency(alpha, (int, float))
|
||||
|
||||
def forcing_term(self, input_):
|
||||
"""
|
||||
Implementation of the forcing term.
|
||||
"""
|
||||
return (
|
||||
(1 - 2 * (self.alpha * torch.pi) ** 2)
|
||||
* torch.sin(self.alpha * torch.pi * input_.extract("x"))
|
||||
* torch.sin(self.alpha * torch.pi * input_.extract("y"))
|
||||
)
|
||||
|
||||
self.conditions["D"] = Condition(
|
||||
domain="D", equation=HelmholtzEquation(self.alpha)
|
||||
domain="D",
|
||||
equation=Helmholtz(self.alpha, forcing_term),
|
||||
)
|
||||
|
||||
def solution(self, pts):
|
||||
|
||||
@@ -1,29 +1,25 @@
|
||||
"""Formulation of the Poisson problem in a square domain."""
|
||||
|
||||
import torch
|
||||
from ... import Condition
|
||||
from ...operator import laplacian
|
||||
from ...equation import FixedValue, Poisson
|
||||
from ...problem import SpatialProblem
|
||||
from ...domain import CartesianDomain
|
||||
from ...equation import Equation, FixedValue
|
||||
from ... import Condition
|
||||
|
||||
|
||||
def laplace_equation(input_, output_):
|
||||
def forcing_term(input_):
|
||||
"""
|
||||
Implementation of the laplace equation.
|
||||
Implementation of the forcing term of the Poisson problem.
|
||||
|
||||
:param LabelTensor input_: Input data of the problem.
|
||||
:param LabelTensor output_: Output data of the problem.
|
||||
:return: The residual of the laplace equation.
|
||||
:param LabelTensor input_: The points where the forcing term is evaluated.
|
||||
:return: The forcing term of the Poisson problem.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
force_term = (
|
||||
return (
|
||||
torch.sin(input_.extract(["x"]) * torch.pi)
|
||||
* torch.sin(input_.extract(["y"]) * torch.pi)
|
||||
* (2 * torch.pi**2)
|
||||
)
|
||||
delta_u = laplacian(output_, input_, components=["u"], d=["x", "y"])
|
||||
return delta_u - force_term
|
||||
|
||||
|
||||
class Poisson2DSquareProblem(SpatialProblem):
|
||||
@@ -51,14 +47,14 @@ class Poisson2DSquareProblem(SpatialProblem):
|
||||
"g2": Condition(domain="g2", equation=FixedValue(0.0)),
|
||||
"g3": Condition(domain="g3", equation=FixedValue(0.0)),
|
||||
"g4": Condition(domain="g4", equation=FixedValue(0.0)),
|
||||
"D": Condition(domain="D", equation=Equation(laplace_equation)),
|
||||
"D": Condition(domain="D", equation=Poisson(forcing_term=forcing_term)),
|
||||
}
|
||||
|
||||
def solution(self, pts):
|
||||
"""
|
||||
Implementation of the analytical solution of the Poisson problem.
|
||||
|
||||
:param LabelTensor pts: Points where the solution is evaluated.
|
||||
:param LabelTensor pts: The points where the solution is evaluated.
|
||||
:return: The analytical solution of the Poisson problem.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
|
||||
Reference in New Issue
Block a user