fixing adaptive functions
This commit is contained in:
committed by
Nicola Demo
parent
50fb3b731c
commit
4f5d9559b2
@@ -74,7 +74,27 @@ Layers
|
||||
Continuous convolution <layers/convolution.rst>
|
||||
Proper Orthogonal Decomposition <layers/pod.rst>
|
||||
Periodic Boundary Condition embeddings <layers/embedding.rst>
|
||||
Adpative Activation Function <layers/adaptive_func.rst>
|
||||
|
||||
Adaptive Activation Functions
|
||||
-------------------------------
|
||||
|
||||
.. toctree::
|
||||
:titlesonly:
|
||||
|
||||
Adaptive Function Interface <adaptive_functions/AdaptiveFunctionInterface.rst>
|
||||
Adaptive ReLU <adaptive_functions/AdaptiveReLU.rst>
|
||||
Adaptive Sigmoid <adaptive_functions/AdaptiveSigmoid.rst>
|
||||
Adaptive Tanh <adaptive_functions/AdaptiveTanh.rst>
|
||||
Adaptive SiLU <adaptive_functions/AdaptiveSiLU.rst>
|
||||
Adaptive Mish <adaptive_functions/AdaptiveMish.rst>
|
||||
Adaptive ELU <adaptive_functions/AdaptiveELU.rst>
|
||||
Adaptive CELU <adaptive_functions/AdaptiveCELU.rst>
|
||||
Adaptive GELU <adaptive_functions/AdaptiveGELU.rst>
|
||||
Adaptive Softmin <adaptive_functions/AdaptiveSoftmin.rst>
|
||||
Adaptive Softmax <adaptive_functions/AdaptiveSoftmax.rst>
|
||||
Adaptive SIREN <adaptive_functions/AdaptiveSIREN.rst>
|
||||
Adaptive Exp <adaptive_functions/AdaptiveExp.rst>
|
||||
|
||||
|
||||
Equations and Operators
|
||||
-------------------------
|
||||
|
||||
9
docs/source/_rst/adaptive_functions/AdaptiveCELU.rst
Normal file
9
docs/source/_rst/adaptive_functions/AdaptiveCELU.rst
Normal file
@@ -0,0 +1,9 @@
|
||||
AdaptiveCELU
|
||||
============
|
||||
|
||||
.. currentmodule:: pina.adaptive_functions.adaptive_func
|
||||
|
||||
.. autoclass:: AdaptiveCELU
|
||||
:members:
|
||||
:show-inheritance:
|
||||
:inherited-members: AdaptiveActivationFunctionInterface
|
||||
9
docs/source/_rst/adaptive_functions/AdaptiveELU.rst
Normal file
9
docs/source/_rst/adaptive_functions/AdaptiveELU.rst
Normal file
@@ -0,0 +1,9 @@
|
||||
AdaptiveELU
|
||||
===========
|
||||
|
||||
.. currentmodule:: pina.adaptive_functions.adaptive_func
|
||||
|
||||
.. autoclass:: AdaptiveELU
|
||||
:members:
|
||||
:show-inheritance:
|
||||
:inherited-members: AdaptiveActivationFunctionInterface
|
||||
9
docs/source/_rst/adaptive_functions/AdaptiveExp.rst
Normal file
9
docs/source/_rst/adaptive_functions/AdaptiveExp.rst
Normal file
@@ -0,0 +1,9 @@
|
||||
AdaptiveExp
|
||||
===========
|
||||
|
||||
.. currentmodule:: pina.adaptive_functions.adaptive_func
|
||||
|
||||
.. autoclass:: AdaptiveExp
|
||||
:members:
|
||||
:show-inheritance:
|
||||
:inherited-members: AdaptiveActivationFunctionInterface
|
||||
@@ -0,0 +1,8 @@
|
||||
AdaptiveActivationFunctionInterface
|
||||
=======================================
|
||||
|
||||
.. currentmodule:: pina.adaptive_functions.adaptive_func_interface
|
||||
|
||||
.. automodule:: pina.adaptive_functions.adaptive_func_interface
|
||||
:members:
|
||||
:show-inheritance:
|
||||
9
docs/source/_rst/adaptive_functions/AdaptiveGELU.rst
Normal file
9
docs/source/_rst/adaptive_functions/AdaptiveGELU.rst
Normal file
@@ -0,0 +1,9 @@
|
||||
AdaptiveGELU
|
||||
============
|
||||
|
||||
.. currentmodule:: pina.adaptive_functions.adaptive_func
|
||||
|
||||
.. autoclass:: AdaptiveGELU
|
||||
:members:
|
||||
:show-inheritance:
|
||||
:inherited-members: AdaptiveActivationFunctionInterface
|
||||
9
docs/source/_rst/adaptive_functions/AdaptiveMish.rst
Normal file
9
docs/source/_rst/adaptive_functions/AdaptiveMish.rst
Normal file
@@ -0,0 +1,9 @@
|
||||
AdaptiveMish
|
||||
============
|
||||
|
||||
.. currentmodule:: pina.adaptive_functions.adaptive_func
|
||||
|
||||
.. autoclass:: AdaptiveMish
|
||||
:members:
|
||||
:show-inheritance:
|
||||
:inherited-members: AdaptiveActivationFunctionInterface
|
||||
9
docs/source/_rst/adaptive_functions/AdaptiveReLU.rst
Normal file
9
docs/source/_rst/adaptive_functions/AdaptiveReLU.rst
Normal file
@@ -0,0 +1,9 @@
|
||||
AdaptiveReLU
|
||||
============
|
||||
|
||||
.. currentmodule:: pina.adaptive_functions.adaptive_func
|
||||
|
||||
.. autoclass:: AdaptiveReLU
|
||||
:members:
|
||||
:show-inheritance:
|
||||
:inherited-members: AdaptiveActivationFunctionInterface
|
||||
9
docs/source/_rst/adaptive_functions/AdaptiveSIREN.rst
Normal file
9
docs/source/_rst/adaptive_functions/AdaptiveSIREN.rst
Normal file
@@ -0,0 +1,9 @@
|
||||
AdaptiveSIREN
|
||||
=============
|
||||
|
||||
.. currentmodule:: pina.adaptive_functions.adaptive_func
|
||||
|
||||
.. autoclass:: AdaptiveSIREN
|
||||
:members:
|
||||
:show-inheritance:
|
||||
:inherited-members: AdaptiveActivationFunctionInterface
|
||||
9
docs/source/_rst/adaptive_functions/AdaptiveSiLU.rst
Normal file
9
docs/source/_rst/adaptive_functions/AdaptiveSiLU.rst
Normal file
@@ -0,0 +1,9 @@
|
||||
AdaptiveSiLU
|
||||
============
|
||||
|
||||
.. currentmodule:: pina.adaptive_functions.adaptive_func
|
||||
|
||||
.. autoclass:: AdaptiveSiLU
|
||||
:members:
|
||||
:show-inheritance:
|
||||
:inherited-members: AdaptiveActivationFunctionInterface
|
||||
9
docs/source/_rst/adaptive_functions/AdaptiveSigmoid.rst
Normal file
9
docs/source/_rst/adaptive_functions/AdaptiveSigmoid.rst
Normal file
@@ -0,0 +1,9 @@
|
||||
AdaptiveSigmoid
|
||||
===============
|
||||
|
||||
.. currentmodule:: pina.adaptive_functions.adaptive_func
|
||||
|
||||
.. autoclass:: AdaptiveSigmoid
|
||||
:members:
|
||||
:show-inheritance:
|
||||
:inherited-members: AdaptiveActivationFunctionInterface
|
||||
9
docs/source/_rst/adaptive_functions/AdaptiveSoftmax.rst
Normal file
9
docs/source/_rst/adaptive_functions/AdaptiveSoftmax.rst
Normal file
@@ -0,0 +1,9 @@
|
||||
AdaptiveSoftmax
|
||||
===============
|
||||
|
||||
.. currentmodule:: pina.adaptive_functions.adaptive_func
|
||||
|
||||
.. autoclass:: AdaptiveSoftmax
|
||||
:members:
|
||||
:show-inheritance:
|
||||
:inherited-members: AdaptiveActivationFunctionInterface
|
||||
9
docs/source/_rst/adaptive_functions/AdaptiveSoftmin.rst
Normal file
9
docs/source/_rst/adaptive_functions/AdaptiveSoftmin.rst
Normal file
@@ -0,0 +1,9 @@
|
||||
AdaptiveSoftmin
|
||||
===============
|
||||
|
||||
.. currentmodule:: pina.adaptive_functions.adaptive_func
|
||||
|
||||
.. autoclass:: AdaptiveSoftmin
|
||||
:members:
|
||||
:show-inheritance:
|
||||
:inherited-members: AdaptiveActivationFunctionInterface
|
||||
9
docs/source/_rst/adaptive_functions/AdaptiveTanh.rst
Normal file
9
docs/source/_rst/adaptive_functions/AdaptiveTanh.rst
Normal file
@@ -0,0 +1,9 @@
|
||||
AdaptiveTanh
|
||||
============
|
||||
|
||||
.. currentmodule:: pina.adaptive_functions.adaptive_func
|
||||
|
||||
.. autoclass:: AdaptiveTanh
|
||||
:members:
|
||||
:show-inheritance:
|
||||
:inherited-members: AdaptiveActivationFunctionInterface
|
||||
@@ -1,7 +0,0 @@
|
||||
AdaptiveActivationFunction
|
||||
=============================
|
||||
.. currentmodule:: pina.model.layers.adaptive_func
|
||||
|
||||
.. autoclass:: AdaptiveActivationFunction
|
||||
:members:
|
||||
:show-inheritance:
|
||||
21
pina/adaptive_functions/__init__.py
Normal file
21
pina/adaptive_functions/__init__.py
Normal file
@@ -0,0 +1,21 @@
|
||||
__all__ = [
|
||||
'AdaptiveActivationFunctionInterface',
|
||||
'AdaptiveReLU',
|
||||
'AdaptiveSigmoid',
|
||||
'AdaptiveTanh',
|
||||
'AdaptiveSiLU',
|
||||
'AdaptiveMish',
|
||||
'AdaptiveELU',
|
||||
'AdaptiveCELU',
|
||||
'AdaptiveGELU',
|
||||
'AdaptiveSoftmin',
|
||||
'AdaptiveSoftmax',
|
||||
'AdaptiveSIREN',
|
||||
'AdaptiveExp']
|
||||
|
||||
from .adaptive_func import (AdaptiveReLU, AdaptiveSigmoid, AdaptiveTanh,
|
||||
AdaptiveSiLU, AdaptiveMish, AdaptiveELU,
|
||||
AdaptiveCELU, AdaptiveGELU, AdaptiveSoftmin,
|
||||
AdaptiveSoftmax, AdaptiveSIREN, AdaptiveExp)
|
||||
from .adaptive_func_interface import AdaptiveActivationFunctionInterface
|
||||
|
||||
488
pina/adaptive_functions/adaptive_func.py
Normal file
488
pina/adaptive_functions/adaptive_func.py
Normal file
@@ -0,0 +1,488 @@
|
||||
""" Module for adaptive functions. """
|
||||
|
||||
import torch
|
||||
from ..utils import check_consistency
|
||||
from .adaptive_func_interface import AdaptiveActivationFunctionInterface
|
||||
|
||||
|
||||
class AdaptiveReLU(AdaptiveActivationFunctionInterface):
|
||||
r"""
|
||||
Adaptive trainable :class:`~torch.nn.ReLU` activation function.
|
||||
|
||||
Given the function :math:`\text{ReLU}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
|
||||
the adaptive function
|
||||
:math:`\text{ReLU}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
|
||||
is defined as:
|
||||
|
||||
.. math::
|
||||
\text{ReLU}_{\text{adaptive}}({x}) = \alpha\,\text{ReLU}(\beta{x}+\gamma),
|
||||
|
||||
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
|
||||
ReLU function is defined as:
|
||||
|
||||
.. math::
|
||||
\text{ReLU}(x) = \max(0, x)
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
|
||||
*A continuum among logarithmic, linear, and exponential functions,
|
||||
and its potential to improve generalization in neural networks.*
|
||||
2015 7th international joint conference on knowledge discovery,
|
||||
knowledge engineering and knowledge management (IC3K).
|
||||
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
|
||||
<https://arxiv.org/abs/1602.01321>`_.
|
||||
|
||||
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
|
||||
activation functions accelerate convergence in deep and
|
||||
physics-informed neural networks*. Journal of
|
||||
Computational Physics 404 (2020): 109136.
|
||||
DOI: `JCP 10.1016
|
||||
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
|
||||
"""
|
||||
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
|
||||
super().__init__(alpha, beta, gamma, fixed)
|
||||
self._func = torch.nn.ReLU()
|
||||
|
||||
|
||||
class AdaptiveSigmoid(AdaptiveActivationFunctionInterface):
|
||||
r"""
|
||||
Adaptive trainable :class:`~torch.nn.Sigmoid` activation function.
|
||||
|
||||
Given the function :math:`\text{Sigmoid}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
|
||||
the adaptive function
|
||||
:math:`\text{Sigmoid}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
|
||||
is defined as:
|
||||
|
||||
.. math::
|
||||
\text{Sigmoid}_{\text{adaptive}}({x}) = \alpha\,\text{Sigmoid}(\beta{x}+\gamma),
|
||||
|
||||
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
|
||||
Sigmoid function is defined as:
|
||||
|
||||
.. math::
|
||||
\text{Sigmoid}(x) = \frac{1}{1 + \exp(-x)}
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
|
||||
*A continuum among logarithmic, linear, and exponential functions,
|
||||
and its potential to improve generalization in neural networks.*
|
||||
2015 7th international joint conference on knowledge discovery,
|
||||
knowledge engineering and knowledge management (IC3K).
|
||||
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
|
||||
<https://arxiv.org/abs/1602.01321>`_.
|
||||
|
||||
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
|
||||
activation functions accelerate convergence in deep and
|
||||
physics-informed neural networks*. Journal of
|
||||
Computational Physics 404 (2020): 109136.
|
||||
DOI: `JCP 10.1016
|
||||
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
|
||||
"""
|
||||
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
|
||||
super().__init__(alpha, beta, gamma, fixed)
|
||||
self._func = torch.nn.Sigmoid()
|
||||
|
||||
|
||||
class AdaptiveTanh(AdaptiveActivationFunctionInterface):
|
||||
r"""
|
||||
Adaptive trainable :class:`~torch.nn.Tanh` activation function.
|
||||
|
||||
Given the function :math:`\text{Tanh}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
|
||||
the adaptive function
|
||||
:math:`\text{Tanh}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
|
||||
is defined as:
|
||||
|
||||
.. math::
|
||||
\text{Tanh}_{\text{adaptive}}({x}) = \alpha\,\text{Tanh}(\beta{x}+\gamma),
|
||||
|
||||
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
|
||||
Tanh function is defined as:
|
||||
|
||||
.. math::
|
||||
\text{Tanh}(x) = \frac{\exp(x) - \exp(-x)} {\exp(x) + \exp(-x)}
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
|
||||
*A continuum among logarithmic, linear, and exponential functions,
|
||||
and its potential to improve generalization in neural networks.*
|
||||
2015 7th international joint conference on knowledge discovery,
|
||||
knowledge engineering and knowledge management (IC3K).
|
||||
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
|
||||
<https://arxiv.org/abs/1602.01321>`_.
|
||||
|
||||
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
|
||||
activation functions accelerate convergence in deep and
|
||||
physics-informed neural networks*. Journal of
|
||||
Computational Physics 404 (2020): 109136.
|
||||
DOI: `JCP 10.1016
|
||||
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
|
||||
"""
|
||||
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
|
||||
super().__init__(alpha, beta, gamma, fixed)
|
||||
self._func = torch.nn.Tanh()
|
||||
|
||||
|
||||
class AdaptiveSiLU(AdaptiveActivationFunctionInterface):
|
||||
r"""
|
||||
Adaptive trainable :class:`~torch.nn.SiLU` activation function.
|
||||
|
||||
Given the function :math:`\text{SiLU}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
|
||||
the adaptive function
|
||||
:math:`\text{SiLU}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
|
||||
is defined as:
|
||||
|
||||
.. math::
|
||||
\text{SiLU}_{\text{adaptive}}({x}) = \alpha\,\text{SiLU}(\beta{x}+\gamma),
|
||||
|
||||
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
|
||||
SiLU function is defined as:
|
||||
|
||||
.. math::
|
||||
\text{SiLU}(x) = x * \sigma(x), \text{where }\sigma(x)
|
||||
\text{ is the logistic sigmoid.}
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
|
||||
*A continuum among logarithmic, linear, and exponential functions,
|
||||
and its potential to improve generalization in neural networks.*
|
||||
2015 7th international joint conference on knowledge discovery,
|
||||
knowledge engineering and knowledge management (IC3K).
|
||||
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
|
||||
<https://arxiv.org/abs/1602.01321>`_.
|
||||
|
||||
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
|
||||
activation functions accelerate convergence in deep and
|
||||
physics-informed neural networks*. Journal of
|
||||
Computational Physics 404 (2020): 109136.
|
||||
DOI: `JCP 10.1016
|
||||
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
|
||||
"""
|
||||
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
|
||||
super().__init__(alpha, beta, gamma, fixed)
|
||||
self._func = torch.nn.SiLU()
|
||||
|
||||
|
||||
class AdaptiveMish(AdaptiveActivationFunctionInterface):
|
||||
r"""
|
||||
Adaptive trainable :class:`~torch.nn.Mish` activation function.
|
||||
|
||||
Given the function :math:`\text{Mish}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
|
||||
the adaptive function
|
||||
:math:`\text{Mish}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
|
||||
is defined as:
|
||||
|
||||
.. math::
|
||||
\text{Mish}_{\text{adaptive}}({x}) = \alpha\,\text{Mish}(\beta{x}+\gamma),
|
||||
|
||||
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
|
||||
Mish function is defined as:
|
||||
|
||||
.. math::
|
||||
\text{Mish}(x) = x * \text{Tanh}(x)
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
|
||||
*A continuum among logarithmic, linear, and exponential functions,
|
||||
and its potential to improve generalization in neural networks.*
|
||||
2015 7th international joint conference on knowledge discovery,
|
||||
knowledge engineering and knowledge management (IC3K).
|
||||
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
|
||||
<https://arxiv.org/abs/1602.01321>`_.
|
||||
|
||||
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
|
||||
activation functions accelerate convergence in deep and
|
||||
physics-informed neural networks*. Journal of
|
||||
Computational Physics 404 (2020): 109136.
|
||||
DOI: `JCP 10.1016
|
||||
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
|
||||
"""
|
||||
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
|
||||
super().__init__(alpha, beta, gamma, fixed)
|
||||
self._func = torch.nn.Mish()
|
||||
|
||||
|
||||
class AdaptiveELU(AdaptiveActivationFunctionInterface):
|
||||
r"""
|
||||
Adaptive trainable :class:`~torch.nn.ELU` activation function.
|
||||
|
||||
Given the function :math:`\text{ELU}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
|
||||
the adaptive function
|
||||
:math:`\text{ELU}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
|
||||
is defined as:
|
||||
|
||||
.. math::
|
||||
\text{ELU}_{\text{adaptive}}({x}) = \alpha\,\text{ELU}(\beta{x}+\gamma),
|
||||
|
||||
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
|
||||
ELU function is defined as:
|
||||
|
||||
.. math::
|
||||
\text{ELU}(x) = \begin{cases}
|
||||
x, & \text{ if }x > 0\\
|
||||
\exp(x) - 1, & \text{ if }x \leq 0
|
||||
\end{cases}
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
|
||||
*A continuum among logarithmic, linear, and exponential functions,
|
||||
and its potential to improve generalization in neural networks.*
|
||||
2015 7th international joint conference on knowledge discovery,
|
||||
knowledge engineering and knowledge management (IC3K).
|
||||
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
|
||||
<https://arxiv.org/abs/1602.01321>`_.
|
||||
|
||||
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
|
||||
activation functions accelerate convergence in deep and
|
||||
physics-informed neural networks*. Journal of
|
||||
Computational Physics 404 (2020): 109136.
|
||||
DOI: `JCP 10.1016
|
||||
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
|
||||
"""
|
||||
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
|
||||
super().__init__(alpha, beta, gamma, fixed)
|
||||
self._func = torch.nn.ELU()
|
||||
|
||||
|
||||
class AdaptiveCELU(AdaptiveActivationFunctionInterface):
|
||||
r"""
|
||||
Adaptive trainable :class:`~torch.nn.CELU` activation function.
|
||||
|
||||
Given the function :math:`\text{CELU}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
|
||||
the adaptive function
|
||||
:math:`\text{CELU}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
|
||||
is defined as:
|
||||
|
||||
.. math::
|
||||
\text{CELU}_{\text{adaptive}}({x}) = \alpha\,\text{CELU}(\beta{x}+\gamma),
|
||||
|
||||
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
|
||||
CELU function is defined as:
|
||||
|
||||
.. math::
|
||||
\text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x) - 1))
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
|
||||
*A continuum among logarithmic, linear, and exponential functions,
|
||||
and its potential to improve generalization in neural networks.*
|
||||
2015 7th international joint conference on knowledge discovery,
|
||||
knowledge engineering and knowledge management (IC3K).
|
||||
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
|
||||
<https://arxiv.org/abs/1602.01321>`_.
|
||||
|
||||
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
|
||||
activation functions accelerate convergence in deep and
|
||||
physics-informed neural networks*. Journal of
|
||||
Computational Physics 404 (2020): 109136.
|
||||
DOI: `JCP 10.1016
|
||||
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
|
||||
"""
|
||||
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
|
||||
super().__init__(alpha, beta, gamma, fixed)
|
||||
self._func = torch.nn.CELU()
|
||||
|
||||
class AdaptiveGELU(AdaptiveActivationFunctionInterface):
|
||||
r"""
|
||||
Adaptive trainable :class:`~torch.nn.GELU` activation function.
|
||||
|
||||
Given the function :math:`\text{GELU}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
|
||||
the adaptive function
|
||||
:math:`\text{GELU}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
|
||||
is defined as:
|
||||
|
||||
.. math::
|
||||
\text{GELU}_{\text{adaptive}}({x}) = \alpha\,\text{GELU}(\beta{x}+\gamma),
|
||||
|
||||
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
|
||||
GELU function is defined as:
|
||||
|
||||
.. math::
|
||||
\text{GELU}(x) = 0.5 * x * (1 + \text{Tanh}(\sqrt{2 / \pi} * (x + 0.044715 * x^3)))
|
||||
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
|
||||
*A continuum among logarithmic, linear, and exponential functions,
|
||||
and its potential to improve generalization in neural networks.*
|
||||
2015 7th international joint conference on knowledge discovery,
|
||||
knowledge engineering and knowledge management (IC3K).
|
||||
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
|
||||
<https://arxiv.org/abs/1602.01321>`_.
|
||||
|
||||
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
|
||||
activation functions accelerate convergence in deep and
|
||||
physics-informed neural networks*. Journal of
|
||||
Computational Physics 404 (2020): 109136.
|
||||
DOI: `JCP 10.1016
|
||||
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
|
||||
"""
|
||||
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
|
||||
super().__init__(alpha, beta, gamma, fixed)
|
||||
self._func = torch.nn.GELU()
|
||||
|
||||
|
||||
class AdaptiveSoftmin(AdaptiveActivationFunctionInterface):
|
||||
r"""
|
||||
Adaptive trainable :class:`~torch.nn.Softmin` activation function.
|
||||
|
||||
Given the function :math:`\text{Softmin}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
|
||||
the adaptive function
|
||||
:math:`\text{Softmin}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
|
||||
is defined as:
|
||||
|
||||
.. math::
|
||||
\text{Softmin}_{\text{adaptive}}({x}) = \alpha\,\text{Softmin}(\beta{x}+\gamma),
|
||||
|
||||
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
|
||||
Softmin function is defined as:
|
||||
|
||||
.. math::
|
||||
\text{Softmin}(x_{i}) = \frac{\exp(-x_i)}{\sum_j \exp(-x_j)}
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
|
||||
*A continuum among logarithmic, linear, and exponential functions,
|
||||
and its potential to improve generalization in neural networks.*
|
||||
2015 7th international joint conference on knowledge discovery,
|
||||
knowledge engineering and knowledge management (IC3K).
|
||||
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
|
||||
<https://arxiv.org/abs/1602.01321>`_.
|
||||
|
||||
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
|
||||
activation functions accelerate convergence in deep and
|
||||
physics-informed neural networks*. Journal of
|
||||
Computational Physics 404 (2020): 109136.
|
||||
DOI: `JCP 10.1016
|
||||
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
|
||||
"""
|
||||
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
|
||||
super().__init__(alpha, beta, gamma, fixed)
|
||||
self._func = torch.nn.Softmin()
|
||||
|
||||
|
||||
class AdaptiveSoftmax(AdaptiveActivationFunctionInterface):
|
||||
r"""
|
||||
Adaptive trainable :class:`~torch.nn.Softmax` activation function.
|
||||
|
||||
Given the function :math:`\text{Softmax}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
|
||||
the adaptive function
|
||||
:math:`\text{Softmax}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
|
||||
is defined as:
|
||||
|
||||
.. math::
|
||||
\text{Softmax}_{\text{adaptive}}({x}) = \alpha\,\text{Softmax}(\beta{x}+\gamma),
|
||||
|
||||
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
|
||||
Softmax function is defined as:
|
||||
|
||||
.. math::
|
||||
\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
|
||||
*A continuum among logarithmic, linear, and exponential functions,
|
||||
and its potential to improve generalization in neural networks.*
|
||||
2015 7th international joint conference on knowledge discovery,
|
||||
knowledge engineering and knowledge management (IC3K).
|
||||
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
|
||||
<https://arxiv.org/abs/1602.01321>`_.
|
||||
|
||||
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
|
||||
activation functions accelerate convergence in deep and
|
||||
physics-informed neural networks*. Journal of
|
||||
Computational Physics 404 (2020): 109136.
|
||||
DOI: `JCP 10.1016
|
||||
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
|
||||
"""
|
||||
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
|
||||
super().__init__(alpha, beta, gamma, fixed)
|
||||
self._func = torch.nn.Softmax()
|
||||
|
||||
class AdaptiveSIREN(AdaptiveActivationFunctionInterface):
|
||||
r"""
|
||||
Adaptive trainable :obj:`~torch.sin` function.
|
||||
|
||||
Given the function :math:`\text{sin}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
|
||||
the adaptive function
|
||||
:math:`\text{sin}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
|
||||
is defined as:
|
||||
|
||||
.. math::
|
||||
\text{sin}_{\text{adaptive}}({x}) = \alpha\,\text{sin}(\beta{x}+\gamma),
|
||||
|
||||
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters.
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
|
||||
*A continuum among logarithmic, linear, and exponential functions,
|
||||
and its potential to improve generalization in neural networks.*
|
||||
2015 7th international joint conference on knowledge discovery,
|
||||
knowledge engineering and knowledge management (IC3K).
|
||||
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
|
||||
<https://arxiv.org/abs/1602.01321>`_.
|
||||
|
||||
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
|
||||
activation functions accelerate convergence in deep and
|
||||
physics-informed neural networks*. Journal of
|
||||
Computational Physics 404 (2020): 109136.
|
||||
DOI: `JCP 10.1016
|
||||
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
|
||||
"""
|
||||
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
|
||||
super().__init__(alpha, beta, gamma, fixed)
|
||||
self._func = torch.sin
|
||||
|
||||
class AdaptiveExp(AdaptiveActivationFunctionInterface):
|
||||
r"""
|
||||
Adaptive trainable :obj:`~torch.exp` function.
|
||||
|
||||
Given the function :math:`\text{exp}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
|
||||
the adaptive function
|
||||
:math:`\text{exp}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
|
||||
is defined as:
|
||||
|
||||
.. math::
|
||||
\text{exp}_{\text{adaptive}}({x}) = \alpha\,\text{exp}(\beta{x}),
|
||||
|
||||
where :math:`\alpha,\,\beta` are trainable parameters.
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
|
||||
*A continuum among logarithmic, linear, and exponential functions,
|
||||
and its potential to improve generalization in neural networks.*
|
||||
2015 7th international joint conference on knowledge discovery,
|
||||
knowledge engineering and knowledge management (IC3K).
|
||||
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
|
||||
<https://arxiv.org/abs/1602.01321>`_.
|
||||
|
||||
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
|
||||
activation functions accelerate convergence in deep and
|
||||
physics-informed neural networks*. Journal of
|
||||
Computational Physics 404 (2020): 109136.
|
||||
DOI: `JCP 10.1016
|
||||
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
|
||||
"""
|
||||
def __init__(self, alpha=None, beta=None, fixed=None):
|
||||
|
||||
# only alpha, and beta parameters (gamma=0 fixed)
|
||||
if fixed is None:
|
||||
fixed = ['gamma']
|
||||
else:
|
||||
check_consistency(fixed, str)
|
||||
fixed = list(fixed) + ['gamma']
|
||||
|
||||
# calling super
|
||||
super().__init__(alpha, beta, 0., fixed)
|
||||
self._func = torch.exp
|
||||
@@ -1,14 +1,18 @@
|
||||
""" Module for adaptive functions. """
|
||||
|
||||
import torch
|
||||
|
||||
from pina.utils import check_consistency
|
||||
from abc import ABCMeta
|
||||
|
||||
|
||||
class AdaptiveActivationFunction(torch.nn.Module):
|
||||
class AdaptiveActivationFunctionInterface(torch.nn.Module, metaclass=ABCMeta):
|
||||
r"""
|
||||
The :class:`~pina.model.layers.adaptive_func.AdaptiveActivationFunction`
|
||||
The
|
||||
:class:`~pina.adaptive_functions.adaptive_func_interface.AdaptiveActivationFunctionInterface`
|
||||
class makes a :class:`torch.nn.Module` activation function into an adaptive
|
||||
trainable activation function.
|
||||
trainable activation function. If one wants to create an adpative activation
|
||||
function, this class must be use as base class.
|
||||
|
||||
Given a function :math:`f:\mathbb{R}^n\rightarrow\mathbb{R}^m`, the adaptive
|
||||
function :math:`f_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^m`
|
||||
@@ -19,28 +23,6 @@ class AdaptiveActivationFunction(torch.nn.Module):
|
||||
|
||||
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters.
|
||||
|
||||
:Example:
|
||||
>>> import torch
|
||||
>>> from pina.model.layers import AdaptiveActivationFunction
|
||||
>>>
|
||||
>>> # simple adaptive function with all trainable parameters
|
||||
>>> AdaptiveTanh = AdaptiveActivationFunction(torch.nn.Tanh())
|
||||
>>> AdaptiveTanh(torch.rand(3))
|
||||
tensor([0.1084, 0.3931, 0.7294], grad_fn=<MulBackward0>)
|
||||
>>> AdaptiveTanh.alpha
|
||||
Parameter containing:
|
||||
tensor(1., requires_grad=True)
|
||||
>>>
|
||||
>>> # simple adaptive function with trainable parameters fixed alpha
|
||||
>>> AdaptiveTanh = AdaptiveActivationFunction(torch.nn.Tanh(),
|
||||
... fixed=['alpha'])
|
||||
>>> AdaptiveTanh.alpha
|
||||
tensor(1.)
|
||||
>>> AdaptiveTanh.beta
|
||||
Parameter containing:
|
||||
tensor(1., requires_grad=True)
|
||||
>>>
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
|
||||
@@ -51,14 +33,18 @@ class AdaptiveActivationFunction(torch.nn.Module):
|
||||
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
|
||||
<https://arxiv.org/abs/1602.01321>`_.
|
||||
|
||||
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
|
||||
activation functions accelerate convergence in deep and
|
||||
physics-informed neural networks*. Journal of
|
||||
Computational Physics 404 (2020): 109136.
|
||||
DOI: `JCP 10.1016
|
||||
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
|
||||
"""
|
||||
|
||||
def __init__(self, func, alpha=None, beta=None, gamma=None, fixed=None):
|
||||
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
|
||||
"""
|
||||
Initializes the AdaptiveActivationFunction module.
|
||||
Initializes the Adaptive Function.
|
||||
|
||||
:param callable func: The original collable function. It could be an
|
||||
initialized :meth:`torch.nn.Module`, or a python callable function.
|
||||
:param float | complex alpha: Scaling parameter alpha.
|
||||
Defaults to ``None``. When ``None`` is passed,
|
||||
the variable is initialized to 1.
|
||||
@@ -70,7 +56,7 @@ class AdaptiveActivationFunction(torch.nn.Module):
|
||||
the variable is initialized to 1.
|
||||
:param list fixed: List of parameters to fix during training,
|
||||
i.e. not optimized (``requires_grad`` set to ``False``).
|
||||
Options are ['alpha', 'beta', 'gamma']. Defaults to None.
|
||||
Options are ``alpha``, ``beta``, ``gamma``. Defaults to None.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
@@ -94,8 +80,6 @@ class AdaptiveActivationFunction(torch.nn.Module):
|
||||
check_consistency(alpha, (float, complex))
|
||||
check_consistency(beta, (float, complex))
|
||||
check_consistency(gamma, (float, complex))
|
||||
if not callable(func):
|
||||
raise ValueError("Function must be a callable function.")
|
||||
|
||||
# registering as tensors
|
||||
alpha = torch.tensor(alpha, requires_grad=False)
|
||||
@@ -120,33 +104,43 @@ class AdaptiveActivationFunction(torch.nn.Module):
|
||||
else:
|
||||
self.register_buffer("gamma", gamma)
|
||||
|
||||
# registering function
|
||||
self._func = func
|
||||
# storing the activation
|
||||
self._func = None
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
Define the computation performed at every call.
|
||||
The function to the input elementwise.
|
||||
|
||||
:param x: The input tensor to evaluate the activation function.
|
||||
:type x: torch.Tensor | LabelTensor
|
||||
"""
|
||||
return self.alpha * (self._func(self.beta * x + self.gamma))
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
"""
|
||||
The alpha variable
|
||||
The alpha variable.
|
||||
"""
|
||||
return self._alpha
|
||||
|
||||
@property
|
||||
def beta(self):
|
||||
"""
|
||||
The alpha variable
|
||||
The beta variable.
|
||||
"""
|
||||
return self._beta
|
||||
|
||||
@property
|
||||
def gamma(self):
|
||||
"""
|
||||
The alpha variable
|
||||
The gamma variable.
|
||||
"""
|
||||
return self._gamma
|
||||
|
||||
@property
|
||||
def func(self):
|
||||
"""
|
||||
The callable activation function.
|
||||
"""
|
||||
return self._func
|
||||
@@ -12,7 +12,6 @@ __all__ = [
|
||||
"PeriodicBoundaryEmbedding",
|
||||
"AVNOBlock",
|
||||
"LowRankBlock",
|
||||
"AdaptiveActivationFunction",
|
||||
]
|
||||
|
||||
from .convolution_2d import ContinuousConvBlock
|
||||
@@ -27,4 +26,3 @@ from .pod import PODBlock
|
||||
from .embedding import PeriodicBoundaryEmbedding
|
||||
from .avno_layer import AVNOBlock
|
||||
from .lowrank_layer import LowRankBlock
|
||||
from .adaptive_func import AdaptiveActivationFunction
|
||||
|
||||
62
tests/test_adaptive_functions.py
Normal file
62
tests/test_adaptive_functions.py
Normal file
@@ -0,0 +1,62 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.adaptive_functions import (AdaptiveReLU, AdaptiveSigmoid, AdaptiveTanh,
|
||||
AdaptiveSiLU, AdaptiveMish, AdaptiveELU,
|
||||
AdaptiveCELU, AdaptiveGELU, AdaptiveSoftmin,
|
||||
AdaptiveSoftmax, AdaptiveSIREN, AdaptiveExp)
|
||||
|
||||
|
||||
adaptive_functions = (AdaptiveReLU, AdaptiveSigmoid, AdaptiveTanh,
|
||||
AdaptiveSiLU, AdaptiveMish, AdaptiveELU,
|
||||
AdaptiveCELU, AdaptiveGELU, AdaptiveSoftmin,
|
||||
AdaptiveSoftmax, AdaptiveSIREN, AdaptiveExp)
|
||||
x = torch.rand(10, requires_grad=True)
|
||||
|
||||
@pytest.mark.parametrize("Func", adaptive_functions)
|
||||
def test_constructor(Func):
|
||||
if Func.__name__ == 'AdaptiveExp':
|
||||
# simple
|
||||
Func()
|
||||
# setting values
|
||||
af = Func(alpha=1., beta=2.)
|
||||
assert af.alpha.requires_grad
|
||||
assert af.beta.requires_grad
|
||||
assert af.alpha == 1.
|
||||
assert af.beta == 2.
|
||||
else:
|
||||
# simple
|
||||
Func()
|
||||
# setting values
|
||||
af = Func(alpha=1., beta=2., gamma=3.)
|
||||
assert af.alpha.requires_grad
|
||||
assert af.beta.requires_grad
|
||||
assert af.gamma.requires_grad
|
||||
assert af.alpha == 1.
|
||||
assert af.beta == 2.
|
||||
assert af.gamma == 3.
|
||||
|
||||
# fixed variables
|
||||
af = Func(alpha=1., beta=2., fixed=['alpha'])
|
||||
assert af.alpha.requires_grad is False
|
||||
assert af.beta.requires_grad
|
||||
assert af.alpha == 1.
|
||||
assert af.beta == 2.
|
||||
|
||||
with pytest.raises(TypeError):
|
||||
Func(alpha=1., beta=2., fixed=['delta'])
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
Func(alpha='s')
|
||||
Func(alpha=1)
|
||||
|
||||
@pytest.mark.parametrize("Func", adaptive_functions)
|
||||
def test_forward(Func):
|
||||
af = Func()
|
||||
af(x)
|
||||
|
||||
@pytest.mark.parametrize("Func", adaptive_functions)
|
||||
def test_backward(Func):
|
||||
af = Func()
|
||||
y = af(x)
|
||||
y.mean().backward()
|
||||
@@ -1,48 +0,0 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.model.layers.adaptive_func import AdaptiveActivationFunction
|
||||
|
||||
x = torch.rand(5)
|
||||
torchfunc = torch.nn.Tanh()
|
||||
|
||||
def test_constructor():
|
||||
# simple
|
||||
AdaptiveActivationFunction(torchfunc)
|
||||
|
||||
# setting values
|
||||
af = AdaptiveActivationFunction(torchfunc, alpha=1., beta=2., gamma=3.)
|
||||
assert af.alpha.requires_grad
|
||||
assert af.beta.requires_grad
|
||||
assert af.gamma.requires_grad
|
||||
assert af.alpha == 1.
|
||||
assert af.beta == 2.
|
||||
assert af.gamma == 3.
|
||||
|
||||
# fixed variables
|
||||
af = AdaptiveActivationFunction(torchfunc, alpha=1., beta=2.,
|
||||
gamma=3., fixed=['alpha'])
|
||||
assert af.alpha.requires_grad is False
|
||||
assert af.beta.requires_grad
|
||||
assert af.gamma.requires_grad
|
||||
assert af.alpha == 1.
|
||||
assert af.beta == 2.
|
||||
assert af.gamma == 3.
|
||||
|
||||
with pytest.raises(TypeError):
|
||||
AdaptiveActivationFunction(torchfunc, alpha=1., beta=2.,
|
||||
gamma=3., fixed=['delta'])
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
AdaptiveActivationFunction(torchfunc, alpha='s')
|
||||
AdaptiveActivationFunction(torchfunc, alpha=1., fixed='alpha')
|
||||
AdaptiveActivationFunction(torchfunc, alpha=1)
|
||||
|
||||
def test_forward():
|
||||
af = AdaptiveActivationFunction(torchfunc)
|
||||
af(x)
|
||||
|
||||
def test_backward():
|
||||
af = AdaptiveActivationFunction(torchfunc)
|
||||
y = af(x)
|
||||
y.mean().backward()
|
||||
Reference in New Issue
Block a user