Add SINDy model (#660)

This commit is contained in:
Lorenzo Tomada
2025-10-08 17:04:58 +02:00
committed by GitHub
parent 2108c76d14
commit 5966d038ff
5 changed files with 167 additions and 0 deletions

View File

@@ -106,6 +106,7 @@ Models
GraphNeuralKernel <model/graph_neural_operator_integral_kernel.rst>
PirateNet <model/pirate_network.rst>
EquivariantGraphNeuralOperator <model/equivariant_graph_neural_operator.rst>
SINDy <model/sindy.rst>
Blocks
-------------

View File

@@ -0,0 +1,7 @@
SINDy
=======================
.. currentmodule:: pina.model.sindy
.. autoclass:: SINDy
:members:
:show-inheritance:

View File

@@ -15,6 +15,7 @@ __all__ = [
"GraphNeuralOperator",
"PirateNet",
"EquivariantGraphNeuralOperator",
"SINDy",
]
from .feed_forward import FeedForward, ResidualFeedForward
@@ -28,3 +29,4 @@ from .spline import Spline
from .graph_neural_operator import GraphNeuralOperator
from .pirate_network import PirateNet
from .equivariant_graph_neural_operator import EquivariantGraphNeuralOperator
from .sindy import SINDy

102
pina/model/sindy.py Normal file
View File

@@ -0,0 +1,102 @@
"""Module for the SINDy model class."""
from typing import Callable
import torch
from ..utils import check_consistency, check_positive_integer
class SINDy(torch.nn.Module):
r"""
SINDy model class.
The Sparse Identification of Nonlinear Dynamics (SINDy) model identifies the
governing equations of a dynamical system from data by learning a sparse
linear combination of non-linear candidate functions.
The output of the model is expressed as product of a library matrix and a
coefficient matrix:
.. math::
\dot{X} = \Theta(X) \Xi
where:
- :math:`X \in \mathbb{R}^{B \times D}` is the input snapshots of the
system state. Here, :math:`B` is the batch size and :math:`D` is the
number of state variables.
- :math:`\Theta(X) \in \mathbb{R}^{B \times L}` is the library matrix
obtained by evaluating a set of candidate functions on the input data.
Here, :math:`L` is the number of candidate functions in the library.
- :math:`\Xi \in \mathbb{R}^{L \times D}` is the learned coefficient
matrix that defines the sparse model.
.. seealso::
**Original reference**:
Brunton, S.L., Proctor, J.L., and Kutz, J.N. (2016).
*Discovering governing equations from data: Sparse identification of
non-linear dynamical systems.*
Proceedings of the National Academy of Sciences, 113(15), 3932-3937.
DOI: `10.1073/pnas.1517384113
<https://doi.org/10.1073/pnas.1517384113>`_
"""
def __init__(self, library, output_dimension):
"""
Initialization of the :class:`SINDy` class.
:param list[Callable] library: The collection of candidate functions
used to construct the library matrix. Each function must accept an
input tensor of shape ``[..., D]`` and return a tensor of shape
``[..., 1]``.
:param int output_dimension: The number of output variables, typically
the number of state derivatives. It determines the number of columns
in the coefficient matrix.
:raises ValueError: If ``library`` is not a list of callables.
:raises AssertionError: If ``output_dimension`` is not a positive
integer.
"""
super().__init__()
# Check consistency
check_positive_integer(output_dimension, strict=True)
check_consistency(library, Callable)
if not isinstance(library, list):
raise ValueError("`library` must be a list of callables.")
# Initialization
self._library = library
self._coefficients = torch.nn.Parameter(
torch.zeros(len(library), output_dimension)
)
def forward(self, x):
"""
Forward pass of the :class:`SINDy` model.
:param torch.Tensor x: The input batch of state variables.
:return: The predicted time derivatives of the state variables.
:rtype: torch.Tensor
"""
theta = torch.stack([f(x) for f in self.library], dim=-2)
return torch.einsum("...li , lo -> ...o", theta, self.coefficients)
@property
def library(self):
"""
The library of candidate functions.
:return: The library.
:rtype: list[Callable]
"""
return self._library
@property
def coefficients(self):
"""
The coefficients of the model.
:return: The coefficients.
:rtype: torch.Tensor
"""
return self._coefficients

View File

@@ -0,0 +1,55 @@
import torch
import pytest
from pina.model import SINDy
# Define a simple library of candidate functions and some test data
library = [lambda x: torch.pow(x, 2), lambda x: torch.sin(x)]
@pytest.mark.parametrize("data", [torch.rand((20, 1)), torch.rand((5, 20, 1))])
def test_constructor(data):
SINDy(library, data.shape[-1])
# Should fail if output_dimension is not a positive integer
with pytest.raises(AssertionError):
SINDy(library, "not_int")
with pytest.raises(AssertionError):
SINDy(library, -1)
# Should fail if library is not a list
with pytest.raises(ValueError):
SINDy(lambda x: torch.pow(x, 2), 3)
# Should fail if library is not a list of callables
with pytest.raises(ValueError):
SINDy([1, 2, 3], 3)
@pytest.mark.parametrize("data", [torch.rand((20, 1)), torch.rand((5, 20, 1))])
def test_forward(data):
# Define model
model = SINDy(library, data.shape[-1])
with torch.no_grad():
model.coefficients.data.fill_(1.0)
# Evaluate model
output_ = model(data)
vals = data.pow(2) + torch.sin(data)
print(data.shape, output_.shape, vals.shape)
assert output_.shape == data.shape
assert torch.allclose(output_, vals, atol=1e-6, rtol=1e-6)
@pytest.mark.parametrize("data", [torch.rand((20, 1)), torch.rand((5, 20, 1))])
def test_backward(data):
# Define and evaluate model
model = SINDy(library, data.shape[-1])
output_ = model(data.requires_grad_())
loss = output_.mean()
loss.backward()
assert data.grad.shape == data.shape