variable name fix FeedForward model
This commit is contained in:
committed by
Nicola Demo
parent
17464ceca9
commit
5a4c114d48
@@ -28,16 +28,16 @@ class FeedForward(torch.nn.Module):
|
|||||||
`inner_size` are not considered.
|
`inner_size` are not considered.
|
||||||
:param bool bias: If `True` the MLP will consider some bias.
|
:param bool bias: If `True` the MLP will consider some bias.
|
||||||
"""
|
"""
|
||||||
def __init__(self, input_dimensons, output_dimensions, inner_size=20,
|
def __init__(self, input_dimensions, output_dimensions, inner_size=20,
|
||||||
n_layers=2, func=nn.Tanh, layers=None, bias=True):
|
n_layers=2, func=nn.Tanh, layers=None, bias=True):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
|
|
||||||
if not isinstance(input_dimensons, int):
|
if not isinstance(input_dimensions, int):
|
||||||
raise ValueError('input_dimensons expected to be int.')
|
raise ValueError('input_dimensions expected to be int.')
|
||||||
self.input_dimension = input_dimensons
|
self.input_dimension = input_dimensions
|
||||||
|
|
||||||
if not isinstance(output_dimensions, int):
|
if not isinstance(output_dimensions, int):
|
||||||
raise ValueError('output_dimensions expected to be int.')
|
raise ValueError('output_dimensions expected to be int.')
|
||||||
|
|||||||
@@ -11,8 +11,8 @@ input_ = LabelTensor(data, input_vars)
|
|||||||
|
|
||||||
|
|
||||||
def test_constructor():
|
def test_constructor():
|
||||||
branch_net = FeedForward(input_dimensons=1, output_dimensions=10)
|
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||||
trunk_net = FeedForward(input_dimensons=2, output_dimensions=10)
|
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
|
||||||
DeepONet(branch_net=branch_net,
|
DeepONet(branch_net=branch_net,
|
||||||
trunk_net=trunk_net,
|
trunk_net=trunk_net,
|
||||||
input_indeces_branch_net=['a'],
|
input_indeces_branch_net=['a'],
|
||||||
@@ -22,8 +22,8 @@ def test_constructor():
|
|||||||
|
|
||||||
|
|
||||||
def test_constructor_fails_when_invalid_inner_layer_size():
|
def test_constructor_fails_when_invalid_inner_layer_size():
|
||||||
branch_net = FeedForward(input_dimensons=1, output_dimensions=10)
|
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||||
trunk_net = FeedForward(input_dimensons=2, output_dimensions=8)
|
trunk_net = FeedForward(input_dimensions=2, output_dimensions=8)
|
||||||
with pytest.raises(ValueError):
|
with pytest.raises(ValueError):
|
||||||
DeepONet(branch_net=branch_net,
|
DeepONet(branch_net=branch_net,
|
||||||
trunk_net=trunk_net,
|
trunk_net=trunk_net,
|
||||||
@@ -33,8 +33,8 @@ def test_constructor_fails_when_invalid_inner_layer_size():
|
|||||||
aggregator='*')
|
aggregator='*')
|
||||||
|
|
||||||
def test_forward_extract_str():
|
def test_forward_extract_str():
|
||||||
branch_net = FeedForward(input_dimensons=1, output_dimensions=10)
|
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||||
trunk_net = FeedForward(input_dimensons=2, output_dimensions=10)
|
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
|
||||||
model = DeepONet(branch_net=branch_net,
|
model = DeepONet(branch_net=branch_net,
|
||||||
trunk_net=trunk_net,
|
trunk_net=trunk_net,
|
||||||
input_indeces_branch_net=['a'],
|
input_indeces_branch_net=['a'],
|
||||||
@@ -44,8 +44,8 @@ def test_forward_extract_str():
|
|||||||
model(input_)
|
model(input_)
|
||||||
|
|
||||||
def test_forward_extract_int():
|
def test_forward_extract_int():
|
||||||
branch_net = FeedForward(input_dimensons=1, output_dimensions=10)
|
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||||
trunk_net = FeedForward(input_dimensons=2, output_dimensions=10)
|
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
|
||||||
model = DeepONet(branch_net=branch_net,
|
model = DeepONet(branch_net=branch_net,
|
||||||
trunk_net=trunk_net,
|
trunk_net=trunk_net,
|
||||||
input_indeces_branch_net=[0],
|
input_indeces_branch_net=[0],
|
||||||
@@ -55,8 +55,8 @@ def test_forward_extract_int():
|
|||||||
model(data)
|
model(data)
|
||||||
|
|
||||||
def test_forward_extract_str_wrong():
|
def test_forward_extract_str_wrong():
|
||||||
branch_net = FeedForward(input_dimensons=1, output_dimensions=10)
|
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||||
trunk_net = FeedForward(input_dimensons=2, output_dimensions=10)
|
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
|
||||||
model = DeepONet(branch_net=branch_net,
|
model = DeepONet(branch_net=branch_net,
|
||||||
trunk_net=trunk_net,
|
trunk_net=trunk_net,
|
||||||
input_indeces_branch_net=['a'],
|
input_indeces_branch_net=['a'],
|
||||||
|
|||||||
@@ -11,9 +11,9 @@ input_ = LabelTensor(data, input_vars)
|
|||||||
|
|
||||||
|
|
||||||
def test_constructor():
|
def test_constructor():
|
||||||
branch_net1 = FeedForward(input_dimensons=1, output_dimensions=10)
|
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||||
branch_net2 = FeedForward(input_dimensons=2, output_dimensions=10)
|
branch_net2 = FeedForward(input_dimensions=2, output_dimensions=10)
|
||||||
trunk_net = FeedForward(input_dimensons=1, output_dimensions=10)
|
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||||
networks = {branch_net1 : ['x'],
|
networks = {branch_net1 : ['x'],
|
||||||
branch_net2 : ['x', 'y'],
|
branch_net2 : ['x', 'y'],
|
||||||
trunk_net : ['z']}
|
trunk_net : ['z']}
|
||||||
@@ -23,9 +23,9 @@ def test_constructor():
|
|||||||
|
|
||||||
|
|
||||||
def test_constructor_fails_when_invalid_inner_layer_size():
|
def test_constructor_fails_when_invalid_inner_layer_size():
|
||||||
branch_net1 = FeedForward(input_dimensons=1, output_dimensions=10)
|
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||||
branch_net2 = FeedForward(input_dimensons=2, output_dimensions=10)
|
branch_net2 = FeedForward(input_dimensions=2, output_dimensions=10)
|
||||||
trunk_net = FeedForward(input_dimensons=1, output_dimensions=12)
|
trunk_net = FeedForward(input_dimensions=1, output_dimensions=12)
|
||||||
networks = {branch_net1 : ['x'],
|
networks = {branch_net1 : ['x'],
|
||||||
branch_net2 : ['x', 'y'],
|
branch_net2 : ['x', 'y'],
|
||||||
trunk_net : ['z']}
|
trunk_net : ['z']}
|
||||||
@@ -35,9 +35,9 @@ def test_constructor_fails_when_invalid_inner_layer_size():
|
|||||||
aggregator='*')
|
aggregator='*')
|
||||||
|
|
||||||
def test_forward_extract_str():
|
def test_forward_extract_str():
|
||||||
branch_net1 = FeedForward(input_dimensons=1, output_dimensions=10)
|
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||||
branch_net2 = FeedForward(input_dimensons=1, output_dimensions=10)
|
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||||
trunk_net = FeedForward(input_dimensons=1, output_dimensions=10)
|
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||||
networks = {branch_net1 : ['a'],
|
networks = {branch_net1 : ['a'],
|
||||||
branch_net2 : ['b'],
|
branch_net2 : ['b'],
|
||||||
trunk_net : ['c']}
|
trunk_net : ['c']}
|
||||||
@@ -47,9 +47,9 @@ def test_forward_extract_str():
|
|||||||
model(input_)
|
model(input_)
|
||||||
|
|
||||||
def test_forward_extract_int():
|
def test_forward_extract_int():
|
||||||
branch_net1 = FeedForward(input_dimensons=1, output_dimensions=10)
|
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||||
branch_net2 = FeedForward(input_dimensons=1, output_dimensions=10)
|
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||||
trunk_net = FeedForward(input_dimensons=1, output_dimensions=10)
|
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||||
networks = {branch_net1 : [0],
|
networks = {branch_net1 : [0],
|
||||||
branch_net2 : [1],
|
branch_net2 : [1],
|
||||||
trunk_net : [2]}
|
trunk_net : [2]}
|
||||||
@@ -59,9 +59,9 @@ def test_forward_extract_int():
|
|||||||
model(data)
|
model(data)
|
||||||
|
|
||||||
def test_forward_extract_str_wrong():
|
def test_forward_extract_str_wrong():
|
||||||
branch_net1 = FeedForward(input_dimensons=1, output_dimensions=10)
|
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||||
branch_net2 = FeedForward(input_dimensons=1, output_dimensions=10)
|
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||||
trunk_net = FeedForward(input_dimensons=1, output_dimensions=10)
|
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||||
networks = {branch_net1 : ['a'],
|
networks = {branch_net1 : ['a'],
|
||||||
branch_net2 : ['b'],
|
branch_net2 : ['b'],
|
||||||
trunk_net : ['c']}
|
trunk_net : ['c']}
|
||||||
|
|||||||
Reference in New Issue
Block a user