add multiple outputs possibility in DeepONet

This commit is contained in:
Anna Ivagnes
2024-10-03 17:00:23 +02:00
committed by Nicola Demo
parent bb44c022e9
commit 5d2ca62e65
2 changed files with 36 additions and 3 deletions

View File

@@ -1,5 +1,6 @@
import pytest
import torch
from torch.nn import Linear
from pina import LabelTensor
from pina.model import DeepONet
@@ -8,7 +9,8 @@ from pina.model import FeedForward
data = torch.rand((20, 3))
input_vars = ['a', 'b', 'c']
input_ = LabelTensor(data, input_vars)
symbol_funcs_red = DeepONet._symbol_functions(dim=-1)
output_dims = [1, 5, 10, 20]
def test_constructor():
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
@@ -32,7 +34,6 @@ def test_constructor_fails_when_invalid_inner_layer_size():
reduction='+',
aggregator='*')
def test_forward_extract_str():
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
@@ -43,6 +44,7 @@ def test_forward_extract_str():
reduction='+',
aggregator='*')
model(input_)
assert model(input_).shape[-1] == 1
def test_forward_extract_int():
@@ -100,3 +102,30 @@ def test_backward_extract_str_wrong():
l=torch.mean(model(data))
l.backward()
assert data._grad.shape == torch.Size([20,3])
@pytest.mark.parametrize('red', symbol_funcs_red)
def test_forward_symbol_funcs(red):
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
model = DeepONet(branch_net=branch_net,
trunk_net=trunk_net,
input_indeces_branch_net=['a'],
input_indeces_trunk_net=['b', 'c'],
reduction=red,
aggregator='*')
model(input_)
assert model(input_).shape[-1] == 1
@pytest.mark.parametrize('out_dim', output_dims)
def test_forward_callable_reduction(out_dim):
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
reduction_layer = Linear(10, out_dim)
model = DeepONet(branch_net=branch_net,
trunk_net=trunk_net,
input_indeces_branch_net=['a'],
input_indeces_trunk_net=['b', 'c'],
reduction=reduction_layer,
aggregator='*')
model(input_)
assert model(input_).shape[-1] == out_dim