@@ -5,73 +5,120 @@ from pina import LabelTensor
|
||||
from pina.operators import grad, div, laplacian
|
||||
|
||||
|
||||
def func_vec(x):
|
||||
def func_vector(x):
|
||||
return x**2
|
||||
|
||||
|
||||
def func_scalar(x):
|
||||
print('X')
|
||||
x_ = x.extract(['x'])
|
||||
y_ = x.extract(['y'])
|
||||
mu_ = x.extract(['mu'])
|
||||
return x_**2 + y_**2 + mu_**3
|
||||
z_ = x.extract(['z'])
|
||||
return x_**2 + y_**2 + z_**2
|
||||
|
||||
|
||||
data = torch.rand((20, 3), requires_grad=True)
|
||||
inp = LabelTensor(data, ['x', 'y', 'mu'])
|
||||
labels = ['a', 'b', 'c']
|
||||
tensor_v = LabelTensor(func_vec(inp), labels)
|
||||
tensor_s = LabelTensor(func_scalar(inp).reshape(-1, 1), labels[0])
|
||||
|
||||
inp = LabelTensor(torch.rand((20, 3), requires_grad=True), ['x', 'y', 'z'])
|
||||
tensor_v = LabelTensor(func_vector(inp), ['a', 'b', 'c'])
|
||||
tensor_s = LabelTensor(func_scalar(inp).reshape(-1, 1), ['a'])
|
||||
|
||||
def test_grad_scalar_output():
|
||||
grad_tensor_s = grad(tensor_s, inp)
|
||||
true_val = 2*inp
|
||||
assert grad_tensor_s.shape == inp.shape
|
||||
assert grad_tensor_s.labels == [
|
||||
f'd{tensor_s.labels[0]}d{i}' for i in inp.labels
|
||||
]
|
||||
assert torch.allclose(grad_tensor_s, true_val)
|
||||
|
||||
grad_tensor_s = grad(tensor_s, inp, d=['x', 'y'])
|
||||
true_val = 2*inp.extract(['x', 'y'])
|
||||
assert grad_tensor_s.shape == (inp.shape[0], 2)
|
||||
assert grad_tensor_s.labels == [
|
||||
f'd{tensor_s.labels[0]}d{i}' for i in ['x', 'y']
|
||||
]
|
||||
assert torch.allclose(grad_tensor_s, true_val)
|
||||
|
||||
|
||||
def test_grad_vector_output():
|
||||
grad_tensor_v = grad(tensor_v, inp)
|
||||
true_val = torch.cat(
|
||||
(2*inp.extract(['x']),
|
||||
torch.zeros_like(inp.extract(['y'])),
|
||||
torch.zeros_like(inp.extract(['z'])),
|
||||
torch.zeros_like(inp.extract(['x'])),
|
||||
2*inp.extract(['y']),
|
||||
torch.zeros_like(inp.extract(['z'])),
|
||||
torch.zeros_like(inp.extract(['x'])),
|
||||
torch.zeros_like(inp.extract(['y'])),
|
||||
2*inp.extract(['z'])
|
||||
), dim=1
|
||||
)
|
||||
assert grad_tensor_v.shape == (20, 9)
|
||||
grad_tensor_v = grad(tensor_v, inp, d=['x', 'mu'])
|
||||
assert grad_tensor_v.labels == [
|
||||
f'd{j}d{i}' for j in tensor_v.labels for i in inp.labels
|
||||
]
|
||||
assert torch.allclose(grad_tensor_v, true_val)
|
||||
|
||||
grad_tensor_v = grad(tensor_v, inp, d=['x', 'y'])
|
||||
true_val = torch.cat(
|
||||
(2*inp.extract(['x']),
|
||||
torch.zeros_like(inp.extract(['y'])),
|
||||
torch.zeros_like(inp.extract(['x'])),
|
||||
2*inp.extract(['y']),
|
||||
torch.zeros_like(inp.extract(['x'])),
|
||||
torch.zeros_like(inp.extract(['y']))
|
||||
), dim=1
|
||||
)
|
||||
assert grad_tensor_v.shape == (inp.shape[0], 6)
|
||||
assert grad_tensor_v.labels == [
|
||||
f'd{j}d{i}' for j in tensor_v.labels for i in ['x', 'y']
|
||||
]
|
||||
assert torch.allclose(grad_tensor_v, true_val)
|
||||
|
||||
|
||||
def test_div_vector_output():
|
||||
grad_tensor_v = div(tensor_v, inp)
|
||||
assert grad_tensor_v.shape == (20, 1)
|
||||
grad_tensor_v = div(tensor_v, inp, components=['a', 'b'], d=['x', 'mu'])
|
||||
assert grad_tensor_v.shape == (inp.shape[0], 1)
|
||||
div_tensor_v = div(tensor_v, inp)
|
||||
true_val = 2*torch.sum(inp, dim=1).reshape(-1,1)
|
||||
assert div_tensor_v.shape == (20, 1)
|
||||
assert div_tensor_v.labels == [f'dadx+dbdy+dcdz']
|
||||
assert torch.allclose(div_tensor_v, true_val)
|
||||
|
||||
div_tensor_v = div(tensor_v, inp, components=['a', 'b'], d=['x', 'y'])
|
||||
true_val = 2*torch.sum(inp.extract(['x', 'y']), dim=1).reshape(-1,1)
|
||||
assert div_tensor_v.shape == (inp.shape[0], 1)
|
||||
assert div_tensor_v.labels == [f'dadx+dbdy']
|
||||
assert torch.allclose(div_tensor_v, true_val)
|
||||
|
||||
|
||||
def test_laplacian_scalar_output():
|
||||
laplace_tensor_s = laplacian(tensor_s, inp, components=['a'], d=['x', 'y'])
|
||||
laplace_tensor_s = laplacian(tensor_s, inp)
|
||||
true_val = 6*torch.ones_like(laplace_tensor_s)
|
||||
assert laplace_tensor_s.shape == tensor_s.shape
|
||||
assert laplace_tensor_s.labels == [f"dd{tensor_s.labels[0]}"]
|
||||
assert torch.allclose(laplace_tensor_s, true_val)
|
||||
|
||||
laplace_tensor_s = laplacian(tensor_s, inp, components=['a'], d=['x', 'y'])
|
||||
true_val = 4*torch.ones_like(laplace_tensor_s)
|
||||
assert all((laplace_tensor_s - true_val == 0).flatten())
|
||||
assert laplace_tensor_s.shape == tensor_s.shape
|
||||
assert laplace_tensor_s.labels == [f"dd{tensor_s.labels[0]}"]
|
||||
assert torch.allclose(laplace_tensor_s, true_val)
|
||||
|
||||
|
||||
def test_laplacian_vector_output():
|
||||
laplace_tensor_v = laplacian(tensor_v, inp)
|
||||
true_val = 2*torch.ones_like(tensor_v)
|
||||
assert laplace_tensor_v.shape == tensor_v.shape
|
||||
assert laplace_tensor_v.labels == [
|
||||
f'dd{i}' for i in tensor_v.labels
|
||||
]
|
||||
assert torch.allclose(laplace_tensor_v, true_val)
|
||||
|
||||
laplace_tensor_v = laplacian(tensor_v,
|
||||
inp,
|
||||
components=['a', 'b'],
|
||||
d=['x', 'y'])
|
||||
true_val = 2*torch.ones_like(tensor_v.extract(['a', 'b']))
|
||||
assert laplace_tensor_v.shape == tensor_v.extract(['a', 'b']).shape
|
||||
assert laplace_tensor_v.labels == [
|
||||
f'dd{i}' for i in ['a', 'b']
|
||||
]
|
||||
true_val = 2*torch.ones_like(tensor_v.extract(['a', 'b']))
|
||||
assert all((laplace_tensor_v - true_val == 0).flatten())
|
||||
assert torch.allclose(laplace_tensor_v, true_val)
|
||||
|
||||
Reference in New Issue
Block a user