fix doc solver
This commit is contained in:
@@ -1,19 +1,17 @@
|
||||
"""Module for ReducedOrderModelSolver"""
|
||||
|
||||
import torch
|
||||
|
||||
from .supervised import SupervisedSolver
|
||||
|
||||
|
||||
class ReducedOrderModelSolver(SupervisedSolver):
|
||||
r"""
|
||||
ReducedOrderModelSolver solver class. This class implements a
|
||||
Reduced Order Model solver, using user specified ``reduction_network`` and
|
||||
Reduced Order Model solver class. This class implements the Reduced Order
|
||||
Model solver, using user specified ``reduction_network`` and
|
||||
``interpolation_network`` to solve a specific ``problem``.
|
||||
|
||||
The Reduced Order Model approach aims to find
|
||||
the solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m`
|
||||
of the differential problem:
|
||||
The Reduced Order Model solver aims to find the solution
|
||||
:math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m` of a differential problem:
|
||||
|
||||
.. math::
|
||||
|
||||
@@ -23,13 +21,13 @@ class ReducedOrderModelSolver(SupervisedSolver):
|
||||
\mathbf{x}\in\partial\Omega
|
||||
\end{cases}
|
||||
|
||||
This is done by using two neural networks. The ``reduction_network``, which
|
||||
contains an encoder :math:`\mathcal{E}_{\rm{net}}`, a decoder
|
||||
:math:`\mathcal{D}_{\rm{net}}`; and an ``interpolation_network``
|
||||
This is done by means of two neural networks: the ``reduction_network``,
|
||||
which defines an encoder :math:`\mathcal{E}_{\rm{net}}`, and a decoder
|
||||
:math:`\mathcal{D}_{\rm{net}}`; and the ``interpolation_network``
|
||||
:math:`\mathcal{I}_{\rm{net}}`. The input is assumed to be discretised in
|
||||
the spatial dimensions.
|
||||
|
||||
The following loss function is minimized during training
|
||||
The following loss function is minimized during training:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}_{\rm{problem}} = \frac{1}{N}\sum_{i=1}^N
|
||||
@@ -39,49 +37,46 @@ class ReducedOrderModelSolver(SupervisedSolver):
|
||||
\mathcal{D}_{\rm{net}}[\mathcal{E}_{\rm{net}}[\mathbf{u}(\mu_i)]] -
|
||||
\mathbf{u}(\mu_i))
|
||||
|
||||
where :math:`\mathcal{L}` is a specific loss function, default
|
||||
Mean Square Error:
|
||||
where :math:`\mathcal{L}` is a specific loss function, typically the MSE:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}(v) = \| v \|^2_2.
|
||||
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Hesthaven, Jan S., and Stefano Ubbiali.
|
||||
"Non-intrusive reduced order modeling of nonlinear problems
|
||||
using neural networks." Journal of Computational
|
||||
Physics 363 (2018): 55-78.
|
||||
"Non-intrusive reduced order modeling of nonlinear problems using
|
||||
neural networks."
|
||||
Journal of Computational Physics 363 (2018): 55-78.
|
||||
DOI `10.1016/j.jcp.2018.02.037
|
||||
<https://doi.org/10.1016/j.jcp.2018.02.037>`_.
|
||||
|
||||
.. note::
|
||||
The specified ``reduction_network`` must contain two methods,
|
||||
namely ``encode`` for input encoding and ``decode`` for decoding the
|
||||
former result. The ``interpolation_network`` network ``forward`` output
|
||||
represents the interpolation of the latent space obtain with
|
||||
The specified ``reduction_network`` must contain two methods, namely
|
||||
``encode`` for input encoding, and ``decode`` for decoding the former
|
||||
result. The ``interpolation_network`` network ``forward`` output
|
||||
represents the interpolation of the latent space obtained with
|
||||
``reduction_network.encode``.
|
||||
|
||||
.. note::
|
||||
This solver uses the end-to-end training strategy, i.e. the
|
||||
``reduction_network`` and ``interpolation_network`` are trained
|
||||
simultaneously. For reference on this trainig strategy look at:
|
||||
Pichi, Federico, Beatriz Moya, and Jan S. Hesthaven.
|
||||
simultaneously. For reference on this trainig strategy look at the
|
||||
following:
|
||||
|
||||
..seealso::
|
||||
**Original reference**: Pichi, Federico, Beatriz Moya, and Jan S.
|
||||
Hesthaven.
|
||||
"A graph convolutional autoencoder approach to model order reduction
|
||||
for parametrized PDEs." Journal of
|
||||
Computational Physics 501 (2024): 112762.
|
||||
DOI
|
||||
`10.1016/j.jcp.2024.112762 <https://doi.org/10.1016/
|
||||
j.jcp.2024.112762>`_.
|
||||
for parametrized PDEs."
|
||||
Journal of Computational Physics 501 (2024): 112762.
|
||||
DOI `10.1016/j.jcp.2024.112762
|
||||
<https://doi.org/10.1016/j.jcp.2024.112762>`_.
|
||||
|
||||
.. warning::
|
||||
This solver works only for data-driven model. Hence in the ``problem``
|
||||
definition the codition must only contain ``input``
|
||||
(e.g. coefficient parameters, time parameters), and ``target``.
|
||||
|
||||
.. warning::
|
||||
This solver does not currently support the possibility to pass
|
||||
``extra_feature``.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@@ -96,22 +91,28 @@ class ReducedOrderModelSolver(SupervisedSolver):
|
||||
use_lt=True,
|
||||
):
|
||||
"""
|
||||
Initialization of the :class:`ReducedOrderModelSolver` class.
|
||||
|
||||
:param AbstractProblem problem: The formualation of the problem.
|
||||
:param torch.nn.Module reduction_network: The reduction network used
|
||||
for reducing the input space. It must contain two methods,
|
||||
namely ``encode`` for input encoding and ``decode`` for decoding the
|
||||
for reducing the input space. It must contain two methods, namely
|
||||
``encode`` for input encoding, and ``decode`` for decoding the
|
||||
former result.
|
||||
:param torch.nn.Module interpolation_network: The interpolation network
|
||||
for interpolating the control parameters to latent space obtain by
|
||||
for interpolating the control parameters to latent space obtained by
|
||||
the ``reduction_network`` encoding.
|
||||
:param torch.nn.Module loss: The loss function used as minimizer,
|
||||
default :class:`torch.nn.MSELoss`.
|
||||
:param torch.optim.Optimizer optimizer: The neural network optimizer to
|
||||
use; default is :class:`torch.optim.Adam`.
|
||||
:param torch.optim.LRScheduler scheduler: Learning
|
||||
rate scheduler.
|
||||
:param WeightingInterface weighting: The loss weighting to use.
|
||||
:param bool use_lt: Using LabelTensors as input during training.
|
||||
:param torch.nn.Module loss: The loss function to be minimized.
|
||||
If `None`, the :class:`torch.nn.MSELoss` loss is used.
|
||||
Default is `None`.
|
||||
:param Optimizer optimizer: The optimizer to be used.
|
||||
If `None`, the :class:`torch.optim.Adam`. optimizer is used.
|
||||
Default is ``None``.
|
||||
:param Scheduler scheduler: Learning rate scheduler. If `None`,
|
||||
the constant learning rate scheduler is used. Default is ``None``.
|
||||
:param WeightingInterface weighting: The weighting schema to be used.
|
||||
If `None`, no weighting schema is used. Default is ``None``.
|
||||
:param bool use_lt: If ``True``, the solver uses LabelTensors as input.
|
||||
Default is ``True``.
|
||||
"""
|
||||
model = torch.nn.ModuleDict(
|
||||
{
|
||||
@@ -146,10 +147,10 @@ class ReducedOrderModelSolver(SupervisedSolver):
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass implementation for the solver. It finds the encoder
|
||||
representation by calling ``interpolation_network.forward`` on the
|
||||
input, and maps this representation to output space by calling
|
||||
``reduction_network.decode``.
|
||||
Forward pass implementation.
|
||||
It computes the encoder representation by calling the forward method
|
||||
of the ``interpolation_network`` on the input, and maps it to output
|
||||
space by calling the decode methode of the ``reduction_network``.
|
||||
|
||||
:param torch.Tensor x: Input tensor.
|
||||
:return: Solver solution.
|
||||
@@ -161,15 +162,14 @@ class ReducedOrderModelSolver(SupervisedSolver):
|
||||
|
||||
def loss_data(self, input_pts, output_pts):
|
||||
"""
|
||||
The data loss for the ReducedOrderModelSolver solver.
|
||||
It computes the loss between
|
||||
the network output against the true solution. This function
|
||||
should not be override if not intentionally.
|
||||
Compute the data loss by evaluating the loss between the network's
|
||||
output and the true solution. This method should not be overridden, if
|
||||
not intentionally.
|
||||
|
||||
:param LabelTensor input_tensor: The input to the neural networks.
|
||||
:param LabelTensor output_tensor: The true solution to compare the
|
||||
network solution.
|
||||
:return: The residual loss averaged on the input coordinates
|
||||
:param LabelTensor input_pts: The input points to the neural network.
|
||||
:param LabelTensor output_pts: The true solution to compare with the
|
||||
network's output.
|
||||
:return: The supervised loss, averaged over the number of observations.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
# extract networks
|
||||
|
||||
Reference in New Issue
Block a user