fix doc solver
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
"""Module for SupervisedSolver"""
|
||||
"""Module for the Supervised Solver."""
|
||||
|
||||
import torch
|
||||
from torch.nn.modules.loss import _Loss
|
||||
@@ -10,31 +10,28 @@ from ..condition import InputTargetCondition
|
||||
|
||||
class SupervisedSolver(SingleSolverInterface):
|
||||
r"""
|
||||
SupervisedSolver solver class. This class implements a SupervisedSolver,
|
||||
Supervised Solver solver class. This class implements a Supervised Solver,
|
||||
using a user specified ``model`` to solve a specific ``problem``.
|
||||
|
||||
The Supervised Solver class aims to find
|
||||
a map between the input :math:`\mathbf{s}:\Omega\rightarrow\mathbb{R}^m`
|
||||
and the output :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m`. The input
|
||||
can be discretised in space (as in :obj:`~pina.solver.rom.ROMe2eSolver`),
|
||||
or not (e.g. when training Neural Operators).
|
||||
The Supervised Solver class aims to find a map between the input
|
||||
:math:`\mathbf{s}:\Omega\rightarrow\mathbb{R}^m` and the output
|
||||
:math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m`.
|
||||
|
||||
Given a model :math:`\mathcal{M}`, the following loss function is
|
||||
minimized during training:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}_{\rm{problem}} = \frac{1}{N}\sum_{i=1}^N
|
||||
\mathcal{L}(\mathbf{u}_i - \mathcal{M}(\mathbf{v}_i))
|
||||
\mathcal{L}(\mathbf{u}_i - \mathcal{M}(\mathbf{v}_i)),
|
||||
|
||||
where :math:`\mathcal{L}` is a specific loss function,
|
||||
default Mean Square Error:
|
||||
where :math:`\mathcal{L}` is a specific loss function, typically the MSE:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}(v) = \| v \|^2_2.
|
||||
|
||||
In this context :math:`\mathbf{u}_i` and :math:`\mathbf{v}_i` means that
|
||||
we are seeking to approximate multiple (discretised) functions given
|
||||
multiple (discretised) input functions.
|
||||
In this context, :math:`\mathbf{u}_i` and :math:`\mathbf{v}_i` indicates
|
||||
the will to approximate multiple (discretised) functions given multiple
|
||||
(discretised) input functions.
|
||||
"""
|
||||
|
||||
accepted_conditions_types = InputTargetCondition
|
||||
@@ -50,16 +47,22 @@ class SupervisedSolver(SingleSolverInterface):
|
||||
use_lt=True,
|
||||
):
|
||||
"""
|
||||
:param AbstractProblem problem: The formualation of the problem.
|
||||
:param torch.nn.Module model: The neural network model to use.
|
||||
:param torch.nn.Module loss: The loss function used as minimizer,
|
||||
default :class:`torch.nn.MSELoss`.
|
||||
:param torch.optim.Optimizer optimizer: The neural network optimizer to
|
||||
use; default is :class:`torch.optim.Adam`.
|
||||
:param torch.optim.LRScheduler scheduler: Learning
|
||||
rate scheduler.
|
||||
:param WeightingInterface weighting: The loss weighting to use.
|
||||
:param bool use_lt: Using LabelTensors as input during training.
|
||||
Initialization of the :class:`SupervisedSolver` class.
|
||||
|
||||
:param AbstractProblem problem: The problem to be solved.
|
||||
:param torch.nn.Module model: The neural network model to be used.
|
||||
:param torch.nn.Module loss: The loss function to be minimized.
|
||||
If `None`, the Mean Squared Error (MSE) loss is used.
|
||||
Default is `None`.
|
||||
:param torch.optim.Optimizer optimizer: The optimizer to be used.
|
||||
If `None`, the Adam optimizer is used. Default is ``None``.
|
||||
:param torch.optim.LRScheduler scheduler: Learning rate scheduler.
|
||||
If `None`, the constant learning rate scheduler is used.
|
||||
Default is ``None``.
|
||||
:param WeightingInterface weighting: The weighting schema to be used.
|
||||
If `None`, no weighting schema is used. Default is ``None``.
|
||||
:param bool use_lt: If ``True``, the solver uses LabelTensors as input.
|
||||
Default is ``True``.
|
||||
"""
|
||||
if loss is None:
|
||||
loss = torch.nn.MSELoss()
|
||||
@@ -81,16 +84,13 @@ class SupervisedSolver(SingleSolverInterface):
|
||||
|
||||
def optimization_cycle(self, batch):
|
||||
"""
|
||||
Perform an optimization cycle by computing the loss for each condition
|
||||
in the given batch.
|
||||
The optimization cycle for the solvers.
|
||||
|
||||
:param batch: A batch of data, where each element is a tuple containing
|
||||
a condition name and a dictionary of points.
|
||||
:type batch: list of tuples (str, dict)
|
||||
:return: The computed loss for the all conditions in the batch,
|
||||
cast to a subclass of `torch.Tensor`. It should return a dict
|
||||
containing the condition name and the associated scalar loss.
|
||||
:rtype: dict(torch.Tensor)
|
||||
:param list[tuple[str, dict]] batch: The batch element in the dataloader.
|
||||
:return: The computed loss for the all conditions in the batch, casted
|
||||
to a subclass of `torch.Tensor`. It should return a dict containing
|
||||
the condition name and the associated scalar loss.
|
||||
:rtype: dict
|
||||
"""
|
||||
condition_loss = {}
|
||||
for condition_name, points in batch:
|
||||
@@ -105,16 +105,16 @@ class SupervisedSolver(SingleSolverInterface):
|
||||
|
||||
def loss_data(self, input_pts, output_pts):
|
||||
"""
|
||||
The data loss for the Supervised solver. It computes the loss between
|
||||
the network output against the true solution. This function
|
||||
should not be override if not intentionally.
|
||||
Compute the data loss for the Supervised solver by evaluating the loss
|
||||
between the network's output and the true solution. This method should
|
||||
not be overridden, if not intentionally.
|
||||
|
||||
:param input_pts: The input to the neural networks.
|
||||
:param input_pts: The input points to the neural network.
|
||||
:type input_pts: LabelTensor | torch.Tensor
|
||||
:param output_pts: The true solution to compare the
|
||||
network solution.
|
||||
:param output_pts: The true solution to compare with the network's
|
||||
output.
|
||||
:type output_pts: LabelTensor | torch.Tensor
|
||||
:return: The residual loss.
|
||||
:return: The supervised loss, averaged over the number of observations.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
return self._loss(self.forward(input_pts), output_pts)
|
||||
@@ -122,6 +122,9 @@ class SupervisedSolver(SingleSolverInterface):
|
||||
@property
|
||||
def loss(self):
|
||||
"""
|
||||
Loss for training.
|
||||
The loss function to be minimized.
|
||||
|
||||
:return: The loss function to be minimized.
|
||||
:rtype: torch.nn.Module
|
||||
"""
|
||||
return self._loss
|
||||
|
||||
Reference in New Issue
Block a user