Codacy Small Bug Fixes:
- cleaned up imports - cleaned up some code - added docstrings
This commit is contained in:
@@ -1,53 +1,52 @@
|
||||
# import numpy as np
|
||||
# import torch
|
||||
# from pina.problem import Problem
|
||||
# from pina.segment import Segment
|
||||
# from pina.cube import Cube
|
||||
# from pina.problem2d import Problem2D
|
||||
import numpy as np
|
||||
import torch
|
||||
from pina.segment import Segment
|
||||
from pina.cube import Cube
|
||||
from pina.problem2d import Problem2D
|
||||
|
||||
# xmin, xmax, ymin, ymax = -1, 1, -1, 1
|
||||
xmin, xmax, ymin, ymax = -1, 1, -1, 1
|
||||
|
||||
# class ParametricEllipticOptimalControl(Problem2D):
|
||||
class ParametricEllipticOptimalControl(Problem2D):
|
||||
|
||||
# def __init__(self, alpha=1):
|
||||
def __init__(self, alpha=1):
|
||||
|
||||
# def term1(input_, param_, output_):
|
||||
# grad_p = self.grad(output_['p'], input_)
|
||||
# gradgrad_p_x1 = self.grad(grad_p['x1'], input_)
|
||||
# gradgrad_p_x2 = self.grad(grad_p['x2'], input_)
|
||||
# return output_['y'] - param_ - (gradgrad_p_x1['x1'] + gradgrad_p_x2['x2'])
|
||||
def term1(input_, param_, output_):
|
||||
grad_p = self.grad(output_['p'], input_)
|
||||
gradgrad_p_x1 = self.grad(grad_p['x1'], input_)
|
||||
gradgrad_p_x2 = self.grad(grad_p['x2'], input_)
|
||||
return output_['y'] - param_ - (gradgrad_p_x1['x1'] + gradgrad_p_x2['x2'])
|
||||
|
||||
# def term2(input_, param_, output_):
|
||||
# grad_y = self.grad(output_['y'], input_)
|
||||
# gradgrad_y_x1 = self.grad(grad_y['x1'], input_)
|
||||
# gradgrad_y_x2 = self.grad(grad_y['x2'], input_)
|
||||
# return - (gradgrad_y_x1['x1'] + gradgrad_y_x2['x2']) - output_['u_param']
|
||||
def term2(input_, param_, output_):
|
||||
grad_y = self.grad(output_['y'], input_)
|
||||
gradgrad_y_x1 = self.grad(grad_y['x1'], input_)
|
||||
gradgrad_y_x2 = self.grad(grad_y['x2'], input_)
|
||||
return - (gradgrad_y_x1['x1'] + gradgrad_y_x2['x2']) - output_['u_param']
|
||||
|
||||
# def term3(input_, param_, output_):
|
||||
# return output_['p'] - output_['u_param']*alpha
|
||||
def term3(input_, param_, output_):
|
||||
return output_['p'] - output_['u_param']*alpha
|
||||
|
||||
|
||||
# def term(input_, param_, output_):
|
||||
# return term1( input_, param_, output_) +term2( input_, param_, output_) + term3( input_, param_, output_)
|
||||
def term(input_, param_, output_):
|
||||
return term1( input_, param_, output_) +term2( input_, param_, output_) + term3( input_, param_, output_)
|
||||
|
||||
# def nil_dirichlet(input_, param_, output_):
|
||||
# y_value = 0.0
|
||||
# p_value = 0.0
|
||||
# return torch.abs(output_['y'] - y_value) + torch.abs(output_['p'] - p_value)
|
||||
def nil_dirichlet(input_, param_, output_):
|
||||
y_value = 0.0
|
||||
p_value = 0.0
|
||||
return torch.abs(output_['y'] - y_value) + torch.abs(output_['p'] - p_value)
|
||||
|
||||
# self.conditions = {
|
||||
# 'gamma1': {'location': Segment((xmin, ymin), (xmax, ymin)), 'func': nil_dirichlet},
|
||||
# 'gamma2': {'location': Segment((xmax, ymin), (xmax, ymax)), 'func': nil_dirichlet},
|
||||
# 'gamma3': {'location': Segment((xmax, ymax), (xmin, ymax)), 'func': nil_dirichlet},
|
||||
# 'gamma4': {'location': Segment((xmin, ymax), (xmin, ymin)), 'func': nil_dirichlet},
|
||||
# 'D1': {'location': Cube([[xmin, xmax], [ymin, ymax]]), 'func': term},
|
||||
# #'D2': {'location': Cube([[0, 1], [0, 1]]), 'func': term2},
|
||||
# #'D3': {'location': Cube([[0, 1], [0, 1]]), 'func': term3}
|
||||
# }
|
||||
self.conditions = {
|
||||
'gamma1': {'location': Segment((xmin, ymin), (xmax, ymin)), 'func': nil_dirichlet},
|
||||
'gamma2': {'location': Segment((xmax, ymin), (xmax, ymax)), 'func': nil_dirichlet},
|
||||
'gamma3': {'location': Segment((xmax, ymax), (xmin, ymax)), 'func': nil_dirichlet},
|
||||
'gamma4': {'location': Segment((xmin, ymax), (xmin, ymin)), 'func': nil_dirichlet},
|
||||
'D1': {'location': Cube([[xmin, xmax], [ymin, ymax]]), 'func': term},
|
||||
#'D2': {'location': Cube([[0, 1], [0, 1]]), 'func': term2},
|
||||
#'D3': {'location': Cube([[0, 1], [0, 1]]), 'func': term3}
|
||||
}
|
||||
|
||||
self.input_variables = ['x1', 'x2']
|
||||
self.output_variables = ['u', 'p', 'y']
|
||||
self.parameters = ['mu']
|
||||
self.spatial_domain = Cube([[xmin, xmax], [xmin, xmax]])
|
||||
self.parameter_domain = np.array([[0.5, 3]])
|
||||
|
||||
# self.input_variables = ['x1', 'x2']
|
||||
# self.output_variables = ['u', 'p', 'y']
|
||||
# self.parameters = ['mu']
|
||||
# self.spatial_domain = Cube([[xmin, xmax], [xmin, xmax]])
|
||||
# self.parameter_domain = np.array([[0.5, 3]])
|
||||
raise NotImplementedError('not available problem at the moment...')
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
""" Poisson equation example. """
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
@@ -46,8 +47,9 @@ class Poisson(SpatialProblem):
|
||||
# real poisson solution
|
||||
def poisson_sol(self, pts):
|
||||
return -(
|
||||
torch.sin(pts.extract(['x'])*torch.pi)*
|
||||
torch.sin(pts.extract(['x'])*torch.pi) *
|
||||
torch.sin(pts.extract(['y'])*torch.pi)
|
||||
)/(2*torch.pi**2)
|
||||
# return -(np.sin(x*np.pi)*np.sin(y*np.pi))/(2*np.pi**2)
|
||||
|
||||
truth_solution = poisson_sol
|
||||
|
||||
Reference in New Issue
Block a user