Codacy Small Bug Fixes:
- cleaned up imports - cleaned up some code - added docstrings
This commit is contained in:
@@ -1,53 +1,52 @@
|
||||
# import numpy as np
|
||||
# import torch
|
||||
# from pina.problem import Problem
|
||||
# from pina.segment import Segment
|
||||
# from pina.cube import Cube
|
||||
# from pina.problem2d import Problem2D
|
||||
import numpy as np
|
||||
import torch
|
||||
from pina.segment import Segment
|
||||
from pina.cube import Cube
|
||||
from pina.problem2d import Problem2D
|
||||
|
||||
# xmin, xmax, ymin, ymax = -1, 1, -1, 1
|
||||
xmin, xmax, ymin, ymax = -1, 1, -1, 1
|
||||
|
||||
# class ParametricEllipticOptimalControl(Problem2D):
|
||||
class ParametricEllipticOptimalControl(Problem2D):
|
||||
|
||||
# def __init__(self, alpha=1):
|
||||
def __init__(self, alpha=1):
|
||||
|
||||
# def term1(input_, param_, output_):
|
||||
# grad_p = self.grad(output_['p'], input_)
|
||||
# gradgrad_p_x1 = self.grad(grad_p['x1'], input_)
|
||||
# gradgrad_p_x2 = self.grad(grad_p['x2'], input_)
|
||||
# return output_['y'] - param_ - (gradgrad_p_x1['x1'] + gradgrad_p_x2['x2'])
|
||||
def term1(input_, param_, output_):
|
||||
grad_p = self.grad(output_['p'], input_)
|
||||
gradgrad_p_x1 = self.grad(grad_p['x1'], input_)
|
||||
gradgrad_p_x2 = self.grad(grad_p['x2'], input_)
|
||||
return output_['y'] - param_ - (gradgrad_p_x1['x1'] + gradgrad_p_x2['x2'])
|
||||
|
||||
# def term2(input_, param_, output_):
|
||||
# grad_y = self.grad(output_['y'], input_)
|
||||
# gradgrad_y_x1 = self.grad(grad_y['x1'], input_)
|
||||
# gradgrad_y_x2 = self.grad(grad_y['x2'], input_)
|
||||
# return - (gradgrad_y_x1['x1'] + gradgrad_y_x2['x2']) - output_['u_param']
|
||||
def term2(input_, param_, output_):
|
||||
grad_y = self.grad(output_['y'], input_)
|
||||
gradgrad_y_x1 = self.grad(grad_y['x1'], input_)
|
||||
gradgrad_y_x2 = self.grad(grad_y['x2'], input_)
|
||||
return - (gradgrad_y_x1['x1'] + gradgrad_y_x2['x2']) - output_['u_param']
|
||||
|
||||
# def term3(input_, param_, output_):
|
||||
# return output_['p'] - output_['u_param']*alpha
|
||||
def term3(input_, param_, output_):
|
||||
return output_['p'] - output_['u_param']*alpha
|
||||
|
||||
|
||||
# def term(input_, param_, output_):
|
||||
# return term1( input_, param_, output_) +term2( input_, param_, output_) + term3( input_, param_, output_)
|
||||
def term(input_, param_, output_):
|
||||
return term1( input_, param_, output_) +term2( input_, param_, output_) + term3( input_, param_, output_)
|
||||
|
||||
# def nil_dirichlet(input_, param_, output_):
|
||||
# y_value = 0.0
|
||||
# p_value = 0.0
|
||||
# return torch.abs(output_['y'] - y_value) + torch.abs(output_['p'] - p_value)
|
||||
def nil_dirichlet(input_, param_, output_):
|
||||
y_value = 0.0
|
||||
p_value = 0.0
|
||||
return torch.abs(output_['y'] - y_value) + torch.abs(output_['p'] - p_value)
|
||||
|
||||
# self.conditions = {
|
||||
# 'gamma1': {'location': Segment((xmin, ymin), (xmax, ymin)), 'func': nil_dirichlet},
|
||||
# 'gamma2': {'location': Segment((xmax, ymin), (xmax, ymax)), 'func': nil_dirichlet},
|
||||
# 'gamma3': {'location': Segment((xmax, ymax), (xmin, ymax)), 'func': nil_dirichlet},
|
||||
# 'gamma4': {'location': Segment((xmin, ymax), (xmin, ymin)), 'func': nil_dirichlet},
|
||||
# 'D1': {'location': Cube([[xmin, xmax], [ymin, ymax]]), 'func': term},
|
||||
# #'D2': {'location': Cube([[0, 1], [0, 1]]), 'func': term2},
|
||||
# #'D3': {'location': Cube([[0, 1], [0, 1]]), 'func': term3}
|
||||
# }
|
||||
self.conditions = {
|
||||
'gamma1': {'location': Segment((xmin, ymin), (xmax, ymin)), 'func': nil_dirichlet},
|
||||
'gamma2': {'location': Segment((xmax, ymin), (xmax, ymax)), 'func': nil_dirichlet},
|
||||
'gamma3': {'location': Segment((xmax, ymax), (xmin, ymax)), 'func': nil_dirichlet},
|
||||
'gamma4': {'location': Segment((xmin, ymax), (xmin, ymin)), 'func': nil_dirichlet},
|
||||
'D1': {'location': Cube([[xmin, xmax], [ymin, ymax]]), 'func': term},
|
||||
#'D2': {'location': Cube([[0, 1], [0, 1]]), 'func': term2},
|
||||
#'D3': {'location': Cube([[0, 1], [0, 1]]), 'func': term3}
|
||||
}
|
||||
|
||||
self.input_variables = ['x1', 'x2']
|
||||
self.output_variables = ['u', 'p', 'y']
|
||||
self.parameters = ['mu']
|
||||
self.spatial_domain = Cube([[xmin, xmax], [xmin, xmax]])
|
||||
self.parameter_domain = np.array([[0.5, 3]])
|
||||
|
||||
# self.input_variables = ['x1', 'x2']
|
||||
# self.output_variables = ['u', 'p', 'y']
|
||||
# self.parameters = ['mu']
|
||||
# self.spatial_domain = Cube([[xmin, xmax], [xmin, xmax]])
|
||||
# self.parameter_domain = np.array([[0.5, 3]])
|
||||
raise NotImplementedError('not available problem at the moment...')
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
""" Poisson equation example. """
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
@@ -49,5 +50,6 @@ class Poisson(SpatialProblem):
|
||||
torch.sin(pts.extract(['x'])*torch.pi) *
|
||||
torch.sin(pts.extract(['y'])*torch.pi)
|
||||
)/(2*torch.pi**2)
|
||||
# return -(np.sin(x*np.pi)*np.sin(y*np.pi))/(2*np.pi**2)
|
||||
|
||||
truth_solution = poisson_sol
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
"""Run PINA on Burgers equation"""
|
||||
import argparse
|
||||
import torch
|
||||
from torch.nn import Softplus
|
||||
@@ -11,6 +12,7 @@ class myFeature(torch.nn.Module):
|
||||
"""
|
||||
Feature: sin(pi*x)
|
||||
"""
|
||||
|
||||
def __init__(self, idx):
|
||||
super(myFeature, self).__init__()
|
||||
self.idx = idx
|
||||
|
||||
@@ -1,84 +1,87 @@
|
||||
# import argparse
|
||||
# import numpy as np
|
||||
# import torch
|
||||
# from torch.nn import Softplus
|
||||
import argparse
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.nn import Softplus
|
||||
|
||||
# from pina import PINN, LabelTensor, Plotter
|
||||
# from pina.model import MultiFeedForward
|
||||
# from problems.parametric_elliptic_optimal_control_alpha_variable import (
|
||||
# ParametricEllipticOptimalControl)
|
||||
from pina import PINN, LabelTensor, Plotter
|
||||
from pina.model import MultiFeedForward
|
||||
from problems.parametric_elliptic_optimal_control_alpha_variable import (
|
||||
ParametricEllipticOptimalControl)
|
||||
|
||||
|
||||
# class myFeature(torch.nn.Module):
|
||||
# """
|
||||
# Feature: sin(x)
|
||||
# """
|
||||
class myFeature(torch.nn.Module):
|
||||
"""
|
||||
Feature: sin(x)
|
||||
"""
|
||||
|
||||
# def __init__(self):
|
||||
# super(myFeature, self).__init__()
|
||||
def __init__(self):
|
||||
super(myFeature, self).__init__()
|
||||
|
||||
# def forward(self, x):
|
||||
# t = (-x.extract(['x1'])**2+1) * (-x.extract(['x2'])**2+1)
|
||||
# return LabelTensor(t, ['k0'])
|
||||
def forward(self, x):
|
||||
t = (-x.extract(['x1'])**2+1) * (-x.extract(['x2'])**2+1)
|
||||
return LabelTensor(t, ['k0'])
|
||||
|
||||
|
||||
# class CustomMultiDFF(MultiFeedForward):
|
||||
class CustomMultiDFF(MultiFeedForward):
|
||||
|
||||
# def __init__(self, dff_dict):
|
||||
# super().__init__(dff_dict)
|
||||
def __init__(self, dff_dict):
|
||||
super().__init__(dff_dict)
|
||||
|
||||
# def forward(self, x):
|
||||
# out = self.uu(x)
|
||||
# p = LabelTensor((out.extract(['u_param']) * x.extract(['alpha'])), ['p'])
|
||||
# return out.append(p)
|
||||
def forward(self, x):
|
||||
out = self.uu(x)
|
||||
p = LabelTensor(
|
||||
(out.extract(['u_param']) * x.extract(['alpha'])), ['p'])
|
||||
return out.append(p)
|
||||
|
||||
|
||||
# if __name__ == "__main__":
|
||||
if __name__ == "__main__":
|
||||
|
||||
# parser = argparse.ArgumentParser(description="Run PINA")
|
||||
# group = parser.add_mutually_exclusive_group(required=True)
|
||||
# group.add_argument("-s", "-save", action="store_true")
|
||||
# group.add_argument("-l", "-load", action="store_true")
|
||||
# args = parser.parse_args()
|
||||
parser = argparse.ArgumentParser(description="Run PINA")
|
||||
group = parser.add_mutually_exclusive_group(required=True)
|
||||
group.add_argument("-s", "-save", action="store_true")
|
||||
group.add_argument("-l", "-load", action="store_true")
|
||||
args = parser.parse_args()
|
||||
|
||||
# opc = ParametricEllipticOptimalControl()
|
||||
# model = CustomMultiDFF(
|
||||
# {
|
||||
# 'uu': {
|
||||
# 'input_variables': ['x1', 'x2', 'mu', 'alpha'],
|
||||
# 'output_variables': ['u_param', 'y'],
|
||||
# 'layers': [40, 40, 20],
|
||||
# 'func': Softplus,
|
||||
# 'extra_features': [myFeature()],
|
||||
# },
|
||||
# }
|
||||
# )
|
||||
opc = ParametricEllipticOptimalControl()
|
||||
model = CustomMultiDFF(
|
||||
{
|
||||
'uu': {
|
||||
'input_variables': ['x1', 'x2', 'mu', 'alpha'],
|
||||
'output_variables': ['u_param', 'y'],
|
||||
'layers': [40, 40, 20],
|
||||
'func': Softplus,
|
||||
'extra_features': [myFeature()],
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
# pinn = PINN(
|
||||
# opc,
|
||||
# model,
|
||||
# lr=0.002,
|
||||
# error_norm='mse',
|
||||
# regularizer=1e-8)
|
||||
pinn = PINN(
|
||||
opc,
|
||||
model,
|
||||
lr=0.002,
|
||||
error_norm='mse',
|
||||
regularizer=1e-8)
|
||||
|
||||
# if args.s:
|
||||
if args.s:
|
||||
|
||||
# pinn.span_pts(
|
||||
# {'variables': ['x1', 'x2'], 'mode': 'random', 'n': 100},
|
||||
# {'variables': ['mu', 'alpha'], 'mode': 'grid', 'n': 5},
|
||||
# locations=['D'])
|
||||
# pinn.span_pts(
|
||||
# {'variables': ['x1', 'x2'], 'mode': 'grid', 'n': 20},
|
||||
# {'variables': ['mu', 'alpha'], 'mode': 'grid', 'n': 5},
|
||||
# locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
|
||||
pinn.span_pts(
|
||||
{'variables': ['x1', 'x2'], 'mode': 'random', 'n': 100},
|
||||
{'variables': ['mu', 'alpha'], 'mode': 'grid', 'n': 5},
|
||||
locations=['D'])
|
||||
pinn.span_pts(
|
||||
{'variables': ['x1', 'x2'], 'mode': 'grid', 'n': 20},
|
||||
{'variables': ['mu', 'alpha'], 'mode': 'grid', 'n': 5},
|
||||
locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
|
||||
|
||||
# pinn.train(1000, 20)
|
||||
# pinn.save_state('pina.ocp')
|
||||
pinn.train(1000, 20)
|
||||
pinn.save_state('pina.ocp')
|
||||
|
||||
# else:
|
||||
# pinn.load_state('pina.ocp')
|
||||
# plotter = Plotter()
|
||||
# plotter.plot(pinn, components='y', fixed_variables={'alpha': 0.01, 'mu': 1.0})
|
||||
# plotter.plot(pinn, components='u_param', fixed_variables={'alpha': 0.01, 'mu': 1.0})
|
||||
# plotter.plot(pinn, components='p', fixed_variables={'alpha': 0.01, 'mu': 1.0})
|
||||
raise NotImplementedError('not available problem at the moment...')
|
||||
else:
|
||||
pinn.load_state('pina.ocp')
|
||||
plotter = Plotter()
|
||||
plotter.plot(pinn, components='y',
|
||||
fixed_variables={'alpha': 0.01, 'mu': 1.0})
|
||||
plotter.plot(pinn, components='u_param',
|
||||
fixed_variables={'alpha': 0.01, 'mu': 1.0})
|
||||
plotter.plot(pinn, components='p', fixed_variables={
|
||||
'alpha': 0.01, 'mu': 1.0})
|
||||
|
||||
@@ -48,7 +48,10 @@ class myRBF(torch.nn.Module):
|
||||
result = self.a * torch.exp(-(x - self.b)**2/(self.c**2))
|
||||
return result
|
||||
|
||||
|
||||
class myModel(torch.nn.Module):
|
||||
""" Model for the Poisson equation."""
|
||||
|
||||
def __init__(self):
|
||||
|
||||
super().__init__()
|
||||
@@ -60,6 +63,7 @@ class myModel(torch.nn.Module):
|
||||
result.labels = ['u']
|
||||
return result
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run PINA")
|
||||
parser.add_argument("-s", "--save", action="store_true")
|
||||
@@ -97,7 +101,8 @@ if __name__ == "__main__":
|
||||
print(model.ffn_x.b)
|
||||
print(model.ffn_x.c)
|
||||
|
||||
xi = torch.linspace(0, 1, 64).reshape(-1, 1).as_subclass(LabelTensor)
|
||||
xi = torch.linspace(0, 1, 64).reshape(-1,
|
||||
1).as_subclass(LabelTensor)
|
||||
xi.labels = ['x']
|
||||
yi = model.ffn_x(xi)
|
||||
y_truth = -torch.sin(xi*torch.pi)
|
||||
|
||||
@@ -1,10 +1,9 @@
|
||||
import argparse
|
||||
import sys
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.nn import ReLU, Tanh, Softplus
|
||||
|
||||
from pina import PINN, LabelTensor, Plotter
|
||||
from pina import PINN, Plotter
|
||||
from pina.model import FeedForward
|
||||
from pina.adaptive_functions import AdaptiveSin, AdaptiveCos, AdaptiveTanh
|
||||
from problems.stokes import Stokes
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
""" Implementation of adaptive linear layer. """
|
||||
import torch
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import torch
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
class AdaptiveReLU(torch.nn.Module):
|
||||
class AdaptiveReLU(torch.nn.Module, Parameter):
|
||||
'''
|
||||
Implementation of soft exponential activation.
|
||||
Shape:
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
""" """
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
import functools
|
||||
|
||||
|
||||
@@ -82,7 +82,8 @@ class CartesianDomain(Location):
|
||||
pts = chebyshev_roots(n).mul(.5).add(.5).reshape(-1, 1)
|
||||
elif mode == 'grid':
|
||||
pts = torch.linspace(0, 1, n).reshape(-1, 1)
|
||||
elif mode == 'lh' or mode == 'latin':
|
||||
# elif mode == 'lh' or mode == 'latin':
|
||||
elif mode in ['lh', 'latin']:
|
||||
pts = torch_lhs(n, dim)
|
||||
|
||||
pts *= bounds[:, 1] - bounds[:, 0]
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
""" Integral class for continous convolution"""
|
||||
import torch
|
||||
|
||||
|
||||
|
||||
@@ -4,6 +4,8 @@ from ..utils import check_consistency
|
||||
|
||||
|
||||
class Network(torch.nn.Module):
|
||||
""" Network class with starndard forward method
|
||||
and possibility to pass extra features."""
|
||||
|
||||
def __init__(self, model, extra_features=None):
|
||||
super().__init__()
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
""" Module for plotting. """
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from pina import LabelTensor
|
||||
@@ -43,7 +42,8 @@ class Plotter:
|
||||
proj = '3d' if len(variables) == 3 else None
|
||||
ax = fig.add_subplot(projection=proj)
|
||||
for location in solver.problem.input_pts:
|
||||
coords = solver.problem.input_pts[location].extract(variables).T.detach()
|
||||
coords = solver.problem.input_pts[location].extract(
|
||||
variables).T.detach()
|
||||
if coords.shape[0] == 1: # 1D samples
|
||||
ax.plot(coords[0], torch.zeros(coords[0].shape), '.',
|
||||
label=location)
|
||||
|
||||
Reference in New Issue
Block a user