Documentation and docstring graph and data
This commit is contained in:
committed by
Nicola Demo
parent
6ce0bafc2b
commit
635e3b3a75
@@ -10,13 +10,31 @@ from ..graph import Graph, LabelBatch
|
||||
|
||||
class PinaDatasetFactory:
|
||||
"""
|
||||
Factory class for the PINA dataset. Depending on the type inside the
|
||||
conditions it creates a different dataset object:
|
||||
- PinaTensorDataset for torch.Tensor
|
||||
- PinaGraphDataset for list of torch_geometric.data.Data objects
|
||||
Factory class for the PINA dataset.
|
||||
|
||||
Depending on the type inside the conditions, it creates a different dataset
|
||||
object:
|
||||
|
||||
- :class:`PinaTensorDataset` for `torch.Tensor`
|
||||
- :class:`PinaGraphDataset` for `list` of `torch_geometric.data.Data`
|
||||
objects
|
||||
"""
|
||||
|
||||
def __new__(cls, conditions_dict, **kwargs):
|
||||
"""
|
||||
Instantiate the appropriate subclass of :class:`PinaDataset`.
|
||||
|
||||
If a graph is present in the conditions, returns a
|
||||
:class:`PinaGraphDataset`, otherwise returns a
|
||||
:class:`PinaTensorDataset`.
|
||||
|
||||
:param dict conditions_dict: Dictionary containing the conditions.
|
||||
:return: A subclass of :class:`PinaDataset`.
|
||||
:rtype: :class:`PinaTensorDataset` | :class:`PinaGraphDataset`
|
||||
|
||||
:raises ValueError: If an empty dictionary is provided.
|
||||
"""
|
||||
|
||||
# Check if conditions_dict is empty
|
||||
if len(conditions_dict) == 0:
|
||||
raise ValueError("No conditions provided")
|
||||
@@ -31,9 +49,21 @@ class PinaDatasetFactory:
|
||||
|
||||
@staticmethod
|
||||
def _is_graph_dataset(conditions_dict):
|
||||
"""
|
||||
Check if a graph is present in the conditions.
|
||||
|
||||
:param conditions_dict: Dictionary containing the conditions.
|
||||
:type conditions_dict: dict
|
||||
:return: True if a graph is present in the conditions, False otherwise
|
||||
:rtype: bool
|
||||
"""
|
||||
|
||||
# Iterate over the conditions dictionary
|
||||
for v in conditions_dict.values():
|
||||
# Iterate over the values of the current condition
|
||||
for cond in v.values():
|
||||
if isinstance(cond, (Data, Graph, list)):
|
||||
# Check if the current value is a list of Data objects
|
||||
if isinstance(cond, (Data, Graph, list, tuple)):
|
||||
return True
|
||||
return False
|
||||
|
||||
@@ -46,6 +76,19 @@ class PinaDataset(Dataset):
|
||||
def __init__(
|
||||
self, conditions_dict, max_conditions_lengths, automatic_batching
|
||||
):
|
||||
"""
|
||||
Initialize the :class:`PinaDataset`.
|
||||
|
||||
Stores the conditions dictionary, the maximum number of conditions to
|
||||
consider, and the automatic batching flag.
|
||||
|
||||
:param dict conditions_dict: Dictionary containing the conditions.
|
||||
:param dict max_conditions_lengths: Maximum number of data points to
|
||||
consider in a single batch for each condition.
|
||||
:param bool automatic_batching: Whether PyTorch automatic batching is
|
||||
enabled in :class:`PinaDataModule`.
|
||||
"""
|
||||
|
||||
# Store the conditions dictionary
|
||||
self.conditions_dict = conditions_dict
|
||||
# Store the maximum number of conditions to consider
|
||||
@@ -63,7 +106,13 @@ class PinaDataset(Dataset):
|
||||
self._getitem_func = self._getitem_dummy
|
||||
|
||||
def _get_max_len(self):
|
||||
""""""
|
||||
"""
|
||||
Returns the length of the longest condition in the dataset
|
||||
|
||||
:return: Length of the longest condition in the dataset
|
||||
:rtype: int
|
||||
"""
|
||||
|
||||
max_len = 0
|
||||
for condition in self.conditions_dict.values():
|
||||
max_len = max(max_len, len(condition["input"]))
|
||||
@@ -76,10 +125,29 @@ class PinaDataset(Dataset):
|
||||
return self._getitem_func(idx)
|
||||
|
||||
def _getitem_dummy(self, idx):
|
||||
"""
|
||||
Return the index itself. This is used when automatic batching is
|
||||
disabled to postpone the data retrieval to the dataloader.
|
||||
|
||||
:param idx: Index
|
||||
:type idx: int
|
||||
:return: Index
|
||||
:rtype: int
|
||||
"""
|
||||
|
||||
# If automatic batching is disabled, return the data at the given index
|
||||
return idx
|
||||
|
||||
def _getitem_int(self, idx):
|
||||
"""
|
||||
Return the data at the given index in the dataset. This is used when
|
||||
automatic batching is enabled.
|
||||
|
||||
:param int idx: Index
|
||||
:return: A dictionary containing the data at the given index
|
||||
:rtype: dict
|
||||
"""
|
||||
|
||||
# If automatic batching is enabled, return the data at the given index
|
||||
return {
|
||||
k: {k_data: v[k_data][idx % len(v["input"])] for k_data in v.keys()}
|
||||
@@ -121,7 +189,14 @@ class PinaDataset(Dataset):
|
||||
|
||||
@abstractmethod
|
||||
def _retrive_data(self, data, idx_list):
|
||||
pass
|
||||
"""
|
||||
Retrieve data from the dataset given a list of indices
|
||||
|
||||
:param dict data: Dictionary containing the data
|
||||
:param list idx_list: List of indices to retrieve
|
||||
:return: Dictionary containing the data at the given indices
|
||||
:rtype: dict
|
||||
"""
|
||||
|
||||
|
||||
class PinaTensorDataset(PinaDataset):
|
||||
@@ -131,12 +206,26 @@ class PinaTensorDataset(PinaDataset):
|
||||
|
||||
# Override _retrive_data method for torch.Tensor data
|
||||
def _retrive_data(self, data, idx_list):
|
||||
"""
|
||||
Retrieve data from the dataset given a list of indices
|
||||
|
||||
:param data: Dictionary containing the data
|
||||
(only torch.Tensor/LableTensor)
|
||||
:type data: dict
|
||||
:param list(int) idx_list: indices to retrieve
|
||||
:return: Dictionary containing the data at the given indices
|
||||
:rtype: dict
|
||||
"""
|
||||
|
||||
return {k: v[idx_list] for k, v in data.items()}
|
||||
|
||||
@property
|
||||
def input(self):
|
||||
"""
|
||||
Method to return input points for training.
|
||||
Method to return all input points from the dataset.
|
||||
|
||||
:return: Dictionary containing the input points
|
||||
:rtype: dict
|
||||
"""
|
||||
return {k: v["input"] for k, v in self.conditions_dict.items()}
|
||||
|
||||
@@ -146,15 +235,33 @@ class PinaGraphDataset(PinaDataset):
|
||||
Class for the PINA dataset with torch_geometric.data.Data data
|
||||
"""
|
||||
|
||||
def _create_graph_batch_from_list(self, data):
|
||||
def _create_graph_batch(self, data):
|
||||
"""
|
||||
Create a LabelBatch object from a list of Data objects.
|
||||
|
||||
:param data: List of Data or Graph objects
|
||||
:type data: list(Data) | list(Graph)
|
||||
:return: LabelBatch object all the graph collated in a single batch
|
||||
disconnected graphs.
|
||||
:rtype: LabelBatch
|
||||
"""
|
||||
batch = LabelBatch.from_data_list(data)
|
||||
return batch
|
||||
|
||||
def _create_output_batch(self, data):
|
||||
def _create_tensor_batch(self, data):
|
||||
"""
|
||||
Create a torch.Tensor object from a list of torch.Tensor objects.
|
||||
|
||||
:param data: torch.Tensor object of shape (N, ...) where N is the
|
||||
number of data points.
|
||||
:type data: torch.Tensor | LabelTensor
|
||||
:return: reshaped torch.Tensor or LabelTensor object
|
||||
:rtype: torch.Tensor | LabelTensor
|
||||
"""
|
||||
out = data.reshape(-1, *data.shape[2:])
|
||||
return out
|
||||
|
||||
def create_graph_batch(self, data):
|
||||
def create_batch(self, data):
|
||||
"""
|
||||
Create a Batch object from a list of Data objects.
|
||||
|
||||
@@ -163,20 +270,29 @@ class PinaGraphDataset(PinaDataset):
|
||||
:return: Batch object
|
||||
:rtype: Batch or PinaBatch
|
||||
"""
|
||||
|
||||
if isinstance(data[0], Data):
|
||||
return self._create_graph_batch_from_list(data)
|
||||
return self._create_output_batch(data)
|
||||
return self._create_graph_batch(data)
|
||||
return self._create_tensor_batch(data)
|
||||
|
||||
# Override _retrive_data method for graph handling
|
||||
def _retrive_data(self, data, idx_list):
|
||||
"""
|
||||
Retrieve data from the dataset given a list of indices
|
||||
|
||||
:param dict data: dictionary containing the data
|
||||
:param list idx_list: list of indices to retrieve
|
||||
:return: dictionary containing the data at the given indices
|
||||
:rtype: dict
|
||||
"""
|
||||
# Return the data from the current condition
|
||||
# If the data is a list of Data objects, create a Batch object
|
||||
# If the data is a list of torch.Tensor objects, create a torch.Tensor
|
||||
return {
|
||||
k: (
|
||||
self._create_graph_batch_from_list([v[i] for i in idx_list])
|
||||
self._create_graph_batch([v[i] for i in idx_list])
|
||||
if isinstance(v, list)
|
||||
else self._create_output_batch(v[idx_list])
|
||||
else self._create_tensor_batch(v[idx_list])
|
||||
)
|
||||
for k, v in data.items()
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user