Lightining update (#104)
* multiple functions for version 0.0 * lightining update * minor changes * data pinn loss added --------- Co-authored-by: Nicola Demo <demo.nicola@gmail.com> Co-authored-by: Dario Coscia <dariocoscia@cli-10-110-3-125.WIFIeduroamSTUD.units.it> Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.station> Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local> Co-authored-by: Dario Coscia <dariocoscia@192.168.1.38>
This commit is contained in:
committed by
Nicola Demo
parent
0e3625de80
commit
63fd068988
410
pina/pinn.py
410
pina/pinn.py
@@ -2,352 +2,118 @@
|
||||
import torch
|
||||
import torch.optim.lr_scheduler as lrs
|
||||
|
||||
from .problem import AbstractProblem
|
||||
from .model import Network
|
||||
|
||||
from .solver import SolverInterface
|
||||
from .label_tensor import LabelTensor
|
||||
from .utils import merge_tensors
|
||||
from .dataset import DummyLoader
|
||||
from .utils import check_consistency
|
||||
from .writer import Writer
|
||||
from .loss import LossInterface
|
||||
from torch.nn.modules.loss import _Loss
|
||||
|
||||
|
||||
torch.pi = torch.acos(torch.zeros(1)).item() * 2 # which is 3.1415927410125732
|
||||
|
||||
|
||||
class PINN(object):
|
||||
class PINN(SolverInterface):
|
||||
|
||||
def __init__(self,
|
||||
problem,
|
||||
model,
|
||||
extra_features=None,
|
||||
loss = torch.nn.MSELoss(),
|
||||
optimizer=torch.optim.Adam,
|
||||
optimizer_kwargs=None,
|
||||
lr=0.001,
|
||||
lr_scheduler_type=lrs.ConstantLR,
|
||||
lr_scheduler_kwargs={"factor": 1, "total_iters": 0},
|
||||
regularizer=0.00001,
|
||||
batch_size=None,
|
||||
dtype=torch.float32,
|
||||
device='cpu',
|
||||
writer=None,
|
||||
error_norm='mse'):
|
||||
optimizer_kwargs={'lr' : 0.001},
|
||||
scheduler=lrs.ConstantLR,
|
||||
scheduler_kwargs={"factor": 1, "total_iters": 0},
|
||||
):
|
||||
'''
|
||||
:param AbstractProblem problem: the formualation of the problem.
|
||||
:param torch.nn.Module model: the neural network model to use.
|
||||
:param torch.nn.Module extra_features: the additional input
|
||||
:param AbstractProblem problem: The formualation of the problem.
|
||||
:param torch.nn.Module model: The neural network model to use.
|
||||
:param torch.nn.Module loss: The loss function used as minimizer,
|
||||
default torch.nn.MSELoss().
|
||||
:param torch.nn.Module extra_features: The additional input
|
||||
features to use as augmented input.
|
||||
:param torch.optim.Optimizer optimizer: the neural network optimizer to
|
||||
:param torch.optim.Optimizer optimizer: The neural network optimizer to
|
||||
use; default is `torch.optim.Adam`.
|
||||
:param dict optimizer_kwargs: Optimizer constructor keyword args.
|
||||
:param float lr: the learning rate; default is 0.001.
|
||||
:param torch.optim.LRScheduler lr_scheduler_type: Learning
|
||||
:param float lr: The learning rate; default is 0.001.
|
||||
:param torch.optim.LRScheduler scheduler: Learning
|
||||
rate scheduler.
|
||||
:param dict lr_scheduler_kwargs: LR scheduler constructor keyword args.
|
||||
:param float regularizer: the coefficient for L2 regularizer term.
|
||||
:param type dtype: the data type to use for the model. Valid option are
|
||||
`torch.float32` and `torch.float64` (`torch.float16` only on GPU);
|
||||
default is `torch.float64`.
|
||||
:param str device: the device used for training; default 'cpu'
|
||||
option include 'cuda' if cuda is available.
|
||||
:param (str, int) error_norm: the loss function used as minimizer,
|
||||
default mean square error 'mse'. If string options include mean
|
||||
error 'me' and mean square error 'mse'. If int, the p-norm is
|
||||
calculated where p is specifined by the int input.
|
||||
:param int batch_size: batch size for the dataloader; default 5.
|
||||
:param dict scheduler_kwargs: LR scheduler constructor keyword args.
|
||||
'''
|
||||
|
||||
if dtype == torch.float64:
|
||||
raise NotImplementedError('only float for now')
|
||||
|
||||
self.problem = problem
|
||||
|
||||
# self._architecture = architecture if architecture else dict()
|
||||
# self._architecture['input_dimension'] = self.problem.domain_bound.shape[0]
|
||||
# self._architecture['output_dimension'] = len(self.problem.variables)
|
||||
# if hasattr(self.problem, 'params_domain'):
|
||||
# self._architecture['input_dimension'] += self.problem.params_domain.shape[0]
|
||||
|
||||
self.error_norm = error_norm
|
||||
|
||||
if device == 'cuda' and not torch.cuda.is_available():
|
||||
raise RuntimeError
|
||||
self.device = torch.device(device)
|
||||
|
||||
self.dtype = dtype
|
||||
self.history_loss = {}
|
||||
|
||||
|
||||
self.model = Network(model=model,
|
||||
input_variables=problem.input_variables,
|
||||
output_variables=problem.output_variables,
|
||||
extra_features=extra_features)
|
||||
|
||||
self.model.to(dtype=self.dtype, device=self.device)
|
||||
|
||||
self.truth_values = {}
|
||||
self.input_pts = {}
|
||||
|
||||
self.trained_epoch = 0
|
||||
|
||||
from .writer import Writer
|
||||
if writer is None:
|
||||
writer = Writer()
|
||||
self.writer = writer
|
||||
|
||||
if not optimizer_kwargs:
|
||||
optimizer_kwargs = {}
|
||||
optimizer_kwargs['lr'] = lr
|
||||
self.optimizer = optimizer(
|
||||
self.model.parameters())#, weight_decay=regularizer, **optimizer_kwargs)
|
||||
#self._lr_scheduler = lr_scheduler_type(
|
||||
# self.optimizer, **lr_scheduler_kwargs)
|
||||
|
||||
self.batch_size = batch_size
|
||||
# self.data_set = PinaDataset(self)
|
||||
|
||||
@property
|
||||
def problem(self):
|
||||
""" The problem formulation."""
|
||||
return self._problem
|
||||
|
||||
@problem.setter
|
||||
def problem(self, problem):
|
||||
"""
|
||||
Set the problem formulation."""
|
||||
if not isinstance(problem, AbstractProblem):
|
||||
raise TypeError
|
||||
self._problem = problem
|
||||
|
||||
def _compute_norm(self, vec):
|
||||
"""
|
||||
Compute the norm of the `vec` one-dimensional tensor based on the
|
||||
`self.error_norm` attribute.
|
||||
|
||||
.. todo: complete
|
||||
|
||||
:param torch.Tensor vec: the tensor
|
||||
"""
|
||||
if isinstance(self.error_norm, int):
|
||||
return torch.linalg.vector_norm(vec, ord=self.error_norm, dtype=self.dytpe)
|
||||
elif self.error_norm == 'mse':
|
||||
return torch.mean(vec.pow(2))
|
||||
elif self.error_norm == 'me':
|
||||
return torch.mean(torch.abs(vec))
|
||||
else:
|
||||
raise RuntimeError
|
||||
|
||||
def save_state(self, filename):
|
||||
"""
|
||||
Save the state of the model.
|
||||
|
||||
:param str filename: the filename to save the state to.
|
||||
"""
|
||||
checkpoint = {
|
||||
'epoch': self.trained_epoch,
|
||||
'model_state': self.model.state_dict(),
|
||||
'optimizer_state': self.optimizer.state_dict(),
|
||||
'optimizer_class': self.optimizer.__class__,
|
||||
'history': self.history_loss,
|
||||
'input_points_dict': self.input_pts,
|
||||
}
|
||||
|
||||
# TODO save also architecture param?
|
||||
# if isinstance(self.model, DeepFeedForward):
|
||||
# checkpoint['model_class'] = self.model.__class__
|
||||
# checkpoint['model_structure'] = {
|
||||
# }
|
||||
torch.save(checkpoint, filename)
|
||||
|
||||
def load_state(self, filename):
|
||||
"""
|
||||
Load the state of the model.
|
||||
super().__init__(model=model, problem=problem, extra_features=extra_features)
|
||||
|
||||
:param str filename: the filename to load the state from.
|
||||
# check consistency
|
||||
check_consistency(optimizer, torch.optim.Optimizer, 'optimizer', subclass=True)
|
||||
check_consistency(optimizer_kwargs, dict, 'optimizer_kwargs')
|
||||
check_consistency(scheduler, lrs.LRScheduler, 'scheduler', subclass=True)
|
||||
check_consistency(scheduler_kwargs, dict, 'scheduler_kwargs')
|
||||
check_consistency(loss, (LossInterface, _Loss), 'loss', subclass=False)
|
||||
|
||||
# assign variables
|
||||
self._optimizer = optimizer(self.model.parameters(), **optimizer_kwargs)
|
||||
self._scheduler = scheduler(self._optimizer, **scheduler_kwargs)
|
||||
self._loss = loss
|
||||
self._writer = Writer()
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass implementation for the PINN
|
||||
solver.
|
||||
|
||||
:param torch.tensor x: Input data.
|
||||
:return: PINN solution.
|
||||
:rtype: torch.tensor
|
||||
"""
|
||||
# extract labels
|
||||
x = x.extract(self.problem.input_variables)
|
||||
# perform forward pass
|
||||
output = self.model(x).as_subclass(LabelTensor)
|
||||
# set the labels
|
||||
output.labels = self.problem.output_variables
|
||||
return output
|
||||
|
||||
def configure_optimizers(self):
|
||||
"""Optimizer configuration for the PINN
|
||||
solver.
|
||||
|
||||
:return: The optimizers and the schedulers
|
||||
:rtype: tuple(list, list)
|
||||
"""
|
||||
return [self._optimizer], [self._scheduler]
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
"""PINN solver training step.
|
||||
|
||||
:param batch: The batch element in the dataloader.
|
||||
:type batch: tuple
|
||||
:param batch_idx: The batch index.
|
||||
:type batch_idx: int
|
||||
:return: The sum of the loss functions.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
|
||||
checkpoint = torch.load(filename)
|
||||
self.model.load_state_dict(checkpoint['model_state'])
|
||||
condition_losses = []
|
||||
|
||||
self.optimizer = checkpoint['optimizer_class'](self.model.parameters())
|
||||
self.optimizer.load_state_dict(checkpoint['optimizer_state'])
|
||||
for condition_name, samples in batch.items():
|
||||
|
||||
self.trained_epoch = checkpoint['epoch']
|
||||
self.history_loss = checkpoint['history']
|
||||
if condition_name not in self.problem.conditions:
|
||||
raise RuntimeError('Something wrong happened.')
|
||||
|
||||
self.input_pts = checkpoint['input_points_dict']
|
||||
condition = self.problem.conditions[condition_name]
|
||||
|
||||
return self
|
||||
# PINN loss: equation evaluated on location or input_points
|
||||
if hasattr(condition, 'equation'):
|
||||
target = condition.equation.residual(samples, self.forward(samples))
|
||||
loss = self._loss(torch.zeros_like(target), target)
|
||||
# PINN loss: evaluate model(input_points) vs output_points
|
||||
elif hasattr(condition, 'output_points'):
|
||||
input_pts, output_pts = samples
|
||||
loss = self._loss(self.forward(input_pts), output_pts)
|
||||
|
||||
def span_pts(self, *args, **kwargs):
|
||||
"""
|
||||
Generate a set of points to span the `Location` of all the conditions of
|
||||
the problem.
|
||||
condition_losses.append(loss * condition.data_weight)
|
||||
|
||||
>>> pinn.span_pts(n=10, mode='grid')
|
||||
>>> pinn.span_pts(n=10, mode='grid', location=['bound1'])
|
||||
>>> pinn.span_pts(n=10, mode='grid', variables=['x'])
|
||||
"""
|
||||
|
||||
if all(key in kwargs for key in ['n', 'mode']):
|
||||
argument = {}
|
||||
argument['n'] = kwargs['n']
|
||||
argument['mode'] = kwargs['mode']
|
||||
argument['variables'] = self.problem.input_variables
|
||||
arguments = [argument]
|
||||
elif any(key in kwargs for key in ['n', 'mode']) and args:
|
||||
raise ValueError("Don't mix args and kwargs")
|
||||
elif isinstance(args[0], int) and isinstance(args[1], str):
|
||||
argument = {}
|
||||
argument['n'] = int(args[0])
|
||||
argument['mode'] = args[1]
|
||||
argument['variables'] = self.problem.input_variables
|
||||
arguments = [argument]
|
||||
elif all(isinstance(arg, dict) for arg in args):
|
||||
arguments = args
|
||||
else:
|
||||
raise RuntimeError
|
||||
|
||||
locations = kwargs.get('locations', 'all')
|
||||
|
||||
if locations == 'all':
|
||||
locations = [condition for condition in self.problem.conditions]
|
||||
for location in locations:
|
||||
condition = self.problem.conditions[location]
|
||||
|
||||
samples = tuple(condition.location.sample(
|
||||
argument['n'],
|
||||
argument['mode'],
|
||||
variables=argument['variables'])
|
||||
for argument in arguments)
|
||||
pts = merge_tensors(samples)
|
||||
|
||||
# TODO
|
||||
# pts = pts.double()
|
||||
self.input_pts[location] = pts
|
||||
|
||||
def _residual_loss(self, input_pts, equation):
|
||||
"""
|
||||
Compute the residual loss for a given condition.
|
||||
|
||||
:param torch.Tensor pts: the points to evaluate the residual at.
|
||||
:param Equation equation: the equation to evaluate the residual with.
|
||||
"""
|
||||
|
||||
input_pts = input_pts.to(dtype=self.dtype, device=self.device)
|
||||
input_pts.requires_grad_(True)
|
||||
input_pts.retain_grad()
|
||||
|
||||
predicted = self.model(input_pts)
|
||||
residuals = equation.residual(input_pts, predicted)
|
||||
return self._compute_norm(residuals)
|
||||
|
||||
def _data_loss(self, input_pts, output_pts):
|
||||
"""
|
||||
Compute the residual loss for a given condition.
|
||||
|
||||
:param torch.Tensor pts: the points to evaluate the residual at.
|
||||
:param Equation equation: the equation to evaluate the residual with.
|
||||
"""
|
||||
input_pts = input_pts.to(dtype=self.dtype, device=self.device)
|
||||
output_pts = output_pts.to(dtype=self.dtype, device=self.device)
|
||||
predicted = self.model(input_pts)
|
||||
residuals = predicted - output_pts
|
||||
return self._compute_norm(residuals)
|
||||
|
||||
|
||||
# def closure(self):
|
||||
# """
|
||||
# """
|
||||
# self.optimizer.zero_grad()
|
||||
|
||||
# condition_losses = []
|
||||
# from torch.utils.data import DataLoader
|
||||
# from .utils import MyDataset
|
||||
# loader = DataLoader(
|
||||
# MyDataset(self.input_pts),
|
||||
# batch_size=self.batch_size,
|
||||
# num_workers=1
|
||||
# )
|
||||
# for condition_name in self.problem.conditions:
|
||||
# condition = self.problem.conditions[condition_name]
|
||||
|
||||
# batch_losses = []
|
||||
# for batch in data_loader[condition_name]:
|
||||
|
||||
# if hasattr(condition, 'equation'):
|
||||
# loss = self._residual_loss(
|
||||
# batch[condition_name], condition.equation)
|
||||
# elif hasattr(condition, 'output_points'):
|
||||
# loss = self._data_loss(
|
||||
# batch[condition_name], condition.output_points)
|
||||
|
||||
# batch_losses.append(loss * condition.data_weight)
|
||||
|
||||
# condition_losses.append(sum(batch_losses))
|
||||
|
||||
# loss = sum(condition_losses)
|
||||
# loss.backward()
|
||||
# return loss
|
||||
|
||||
def closure(self):
|
||||
"""
|
||||
"""
|
||||
self.optimizer.zero_grad()
|
||||
|
||||
losses = []
|
||||
for i, batch in enumerate(self.loader):
|
||||
|
||||
condition_losses = []
|
||||
|
||||
for condition_name, samples in batch.items():
|
||||
|
||||
if condition_name not in self.problem.conditions:
|
||||
raise RuntimeError('Something wrong happened.')
|
||||
|
||||
if samples is None or samples.nelement() == 0:
|
||||
continue
|
||||
|
||||
condition = self.problem.conditions[condition_name]
|
||||
|
||||
if hasattr(condition, 'equation'):
|
||||
loss = self._residual_loss(samples, condition.equation)
|
||||
elif hasattr(condition, 'output_points'):
|
||||
loss = self._data_loss(samples, condition.output_points)
|
||||
|
||||
condition_losses.append(loss * condition.data_weight)
|
||||
|
||||
losses.append(sum(condition_losses))
|
||||
|
||||
loss = sum(losses)
|
||||
loss.backward()
|
||||
return losses[0]
|
||||
|
||||
def train(self, stop=100):
|
||||
|
||||
self.model.train()
|
||||
|
||||
############################################################
|
||||
## TODO: move to problem class
|
||||
for condition in list(set(self.problem.conditions.keys()) - set(self.input_pts.keys())):
|
||||
self.input_pts[condition] = self.problem.conditions[condition].input_points
|
||||
|
||||
mydata = self.input_pts
|
||||
|
||||
self.loader = DummyLoader(mydata)
|
||||
|
||||
while True:
|
||||
|
||||
loss = self.optimizer.step(closure=self.closure)
|
||||
|
||||
self.writer.write_loss_in_loop(self, loss)
|
||||
|
||||
#self._lr_scheduler.step()
|
||||
|
||||
if isinstance(stop, int):
|
||||
if self.trained_epoch == stop:
|
||||
break
|
||||
elif isinstance(stop, float):
|
||||
if loss.item() < stop:
|
||||
break
|
||||
|
||||
self.trained_epoch += 1
|
||||
|
||||
self.model.eval()
|
||||
# TODO Fix the bug, tot_loss is a label tensor without labels
|
||||
# we need to pass it as a torch tensor to make everything work
|
||||
total_loss = sum(condition_losses)
|
||||
return total_loss
|
||||
Reference in New Issue
Block a user