Lightining update (#104)

* multiple functions for version 0.0
* lightining update
* minor changes
* data pinn  loss added
---------

Co-authored-by: Nicola Demo <demo.nicola@gmail.com>
Co-authored-by: Dario Coscia <dariocoscia@cli-10-110-3-125.WIFIeduroamSTUD.units.it>
Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.station>
Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local>
Co-authored-by: Dario Coscia <dariocoscia@192.168.1.38>
This commit is contained in:
Dario Coscia
2023-06-07 15:34:43 +02:00
committed by Nicola Demo
parent 0e3625de80
commit 63fd068988
16 changed files with 710 additions and 603 deletions

View File

@@ -1,17 +1,18 @@
import torch
import pytest
from pina import LabelTensor, Condition, CartesianDomain, PINN
from pina.problem import SpatialProblem
from pina.model import FeedForward
from pina.operators import nabla
from pina.geometry import CartesianDomain
from pina import Condition, LabelTensor, PINN
from pina.trainer import Trainer
from pina.model import FeedForward
from pina.equation.equation import Equation
from pina.equation.equation_factory import FixedValue
from pina.plotter import Plotter
from pina.loss import LpLoss
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
def laplace_equation(input_, output_):
force_term = (torch.sin(input_.extract(['x'])*torch.pi) *
torch.sin(input_.extract(['y'])*torch.pi))
@@ -19,6 +20,8 @@ def laplace_equation(input_, output_):
return nabla_u - force_term
my_laplace = Equation(laplace_equation)
in_ = LabelTensor(torch.tensor([[0., 1.]], requires_grad=True), ['x', 'y'])
out_ = LabelTensor(torch.tensor([[0.]], requires_grad=True), ['u'])
class Poisson(SpatialProblem):
output_variables = ['u']
@@ -68,75 +71,40 @@ class myFeature(torch.nn.Module):
return LabelTensor(t, ['sin(x)sin(y)'])
problem = Poisson()
model = FeedForward(len(problem.input_variables),len(problem.output_variables))
model_extra_feat = FeedForward(len(problem.input_variables) + 1,len(problem.output_variables))
# make the problem
poisson_problem = Poisson()
model = FeedForward(len(poisson_problem.input_variables),len(poisson_problem.output_variables))
model_extra_feats = FeedForward(len(poisson_problem.input_variables)+1,len(poisson_problem.output_variables))
extra_feats = [myFeature()]
def test_constructor():
PINN(problem, model)
PINN(problem = poisson_problem, model=model, extra_features=None)
def test_constructor_extra_feats():
PINN(problem, model_extra_feat, [myFeature()])
def test_span_pts():
pinn = PINN(problem, model)
n = 10
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
pinn.span_pts(n, 'grid', locations=boundaries)
for b in boundaries:
assert pinn.input_pts[b].shape[0] == n
pinn.span_pts(n, 'random', locations=boundaries)
for b in boundaries:
assert pinn.input_pts[b].shape[0] == n
pinn.span_pts(n, 'grid', locations=['D'])
assert pinn.input_pts['D'].shape[0] == n**2
pinn.span_pts(n, 'random', locations=['D'])
assert pinn.input_pts['D'].shape[0] == n
pinn.span_pts(n, 'latin', locations=['D'])
assert pinn.input_pts['D'].shape[0] == n
pinn.span_pts(n, 'lh', locations=['D'])
assert pinn.input_pts['D'].shape[0] == n
def test_sampling_all_args():
pinn = PINN(problem, model)
n = 10
pinn.span_pts(n, 'grid', locations=['D'])
def test_sampling_all_kwargs():
pinn = PINN(problem, model)
n = 10
pinn.span_pts(n=n, mode='latin', locations=['D'])
def test_sampling_dict():
pinn = PINN(problem, model)
n = 10
pinn.span_pts(
{'variables': ['x', 'y'], 'mode': 'grid', 'n': n}, locations=['D'])
def test_sampling_mixed_args_kwargs():
pinn = PINN(problem, model)
n = 10
with pytest.raises(ValueError):
pinn.span_pts(n, mode='latin', locations=['D'])
model_extra_feats = FeedForward(len(poisson_problem.input_variables)+1,len(poisson_problem.output_variables))
PINN(problem = poisson_problem, model=model_extra_feats, extra_features=extra_feats)
def test_train():
pinn = PINN(problem, model)
poisson_problem = Poisson()
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
n = 10
pinn.span_pts(n, 'grid', locations=boundaries)
pinn.span_pts(n, 'grid', locations=['D'])
pinn.train(5)
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
poisson_problem.discretise_domain(n, 'grid', locations=['D'])
pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5})
trainer.train()
def test_train_extra_feats():
poisson_problem = Poisson()
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
n = 10
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
poisson_problem.discretise_domain(n, 'grid', locations=['D'])
pinn = PINN(problem = poisson_problem, model=model_extra_feats, extra_features=extra_feats)
trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5})
trainer.train()
"""
def test_train_2():
@@ -146,8 +114,8 @@ def test_train_2():
param = [0, 3]
for i, truth_key in zip(param, expected_keys):
pinn = PINN(problem, model)
pinn.span_pts(n, 'grid', locations=boundaries)
pinn.span_pts(n, 'grid', locations=['D'])
pinn.discretise_domain(n, 'grid', locations=boundaries)
pinn.discretise_domain(n, 'grid', locations=['D'])
pinn.train(50, save_loss=i)
assert list(pinn.history_loss.keys()) == truth_key
@@ -156,8 +124,8 @@ def test_train_extra_feats():
pinn = PINN(problem, model_extra_feat, [myFeature()])
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
n = 10
pinn.span_pts(n, 'grid', locations=boundaries)
pinn.span_pts(n, 'grid', locations=['D'])
pinn.discretise_domain(n, 'grid', locations=boundaries)
pinn.discretise_domain(n, 'grid', locations=['D'])
pinn.train(5)
@@ -168,8 +136,8 @@ def test_train_2_extra_feats():
param = [0, 3]
for i, truth_key in zip(param, expected_keys):
pinn = PINN(problem, model_extra_feat, [myFeature()])
pinn.span_pts(n, 'grid', locations=boundaries)
pinn.span_pts(n, 'grid', locations=['D'])
pinn.discretise_domain(n, 'grid', locations=boundaries)
pinn.discretise_domain(n, 'grid', locations=['D'])
pinn.train(50, save_loss=i)
assert list(pinn.history_loss.keys()) == truth_key
@@ -181,8 +149,8 @@ def test_train_with_optimizer_kwargs():
param = [0, 3]
for i, truth_key in zip(param, expected_keys):
pinn = PINN(problem, model, optimizer_kwargs={'lr' : 0.3})
pinn.span_pts(n, 'grid', locations=boundaries)
pinn.span_pts(n, 'grid', locations=['D'])
pinn.discretise_domain(n, 'grid', locations=boundaries)
pinn.discretise_domain(n, 'grid', locations=['D'])
pinn.train(50, save_loss=i)
assert list(pinn.history_loss.keys()) == truth_key
@@ -199,8 +167,8 @@ def test_train_with_lr_scheduler():
lr_scheduler_type=torch.optim.lr_scheduler.CyclicLR,
lr_scheduler_kwargs={'base_lr' : 0.1, 'max_lr' : 0.3, 'cycle_momentum': False}
)
pinn.span_pts(n, 'grid', locations=boundaries)
pinn.span_pts(n, 'grid', locations=['D'])
pinn.discretise_domain(n, 'grid', locations=boundaries)
pinn.discretise_domain(n, 'grid', locations=['D'])
pinn.train(50, save_loss=i)
assert list(pinn.history_loss.keys()) == truth_key
@@ -209,8 +177,8 @@ def test_train_with_lr_scheduler():
# pinn = PINN(problem, model, batch_size=6)
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
# n = 10
# pinn.span_pts(n, 'grid', locations=boundaries)
# pinn.span_pts(n, 'grid', locations=['D'])
# pinn.discretise_domain(n, 'grid', locations=boundaries)
# pinn.discretise_domain(n, 'grid', locations=['D'])
# pinn.train(5)
@@ -221,8 +189,8 @@ def test_train_with_lr_scheduler():
# param = [0, 3]
# for i, truth_key in zip(param, expected_keys):
# pinn = PINN(problem, model, batch_size=6)
# pinn.span_pts(n, 'grid', locations=boundaries)
# pinn.span_pts(n, 'grid', locations=['D'])
# pinn.discretise_domain(n, 'grid', locations=boundaries)
# pinn.discretise_domain(n, 'grid', locations=['D'])
# pinn.train(50, save_loss=i)
# assert list(pinn.history_loss.keys()) == truth_key
@@ -233,15 +201,15 @@ if torch.cuda.is_available():
# pinn = PINN(problem, model, batch_size=20, device='cuda')
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
# n = 100
# pinn.span_pts(n, 'grid', locations=boundaries)
# pinn.span_pts(n, 'grid', locations=['D'])
# pinn.discretise_domain(n, 'grid', locations=boundaries)
# pinn.discretise_domain(n, 'grid', locations=['D'])
# pinn.train(5)
def test_gpu_train_nobatch():
pinn = PINN(problem, model, batch_size=None, device='cuda')
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
n = 100
pinn.span_pts(n, 'grid', locations=boundaries)
pinn.span_pts(n, 'grid', locations=['D'])
pinn.discretise_domain(n, 'grid', locations=boundaries)
pinn.discretise_domain(n, 'grid', locations=['D'])
pinn.train(5)
"""