Lightining update (#104)

* multiple functions for version 0.0
* lightining update
* minor changes
* data pinn  loss added
---------

Co-authored-by: Nicola Demo <demo.nicola@gmail.com>
Co-authored-by: Dario Coscia <dariocoscia@cli-10-110-3-125.WIFIeduroamSTUD.units.it>
Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.station>
Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local>
Co-authored-by: Dario Coscia <dariocoscia@192.168.1.38>
This commit is contained in:
Dario Coscia
2023-06-07 15:34:43 +02:00
committed by Nicola Demo
parent 0e3625de80
commit 63fd068988
16 changed files with 710 additions and 603 deletions

97
tests/test_problem.py Normal file
View File

@@ -0,0 +1,97 @@
import torch
import pytest
from pina.problem import SpatialProblem
from pina.operators import nabla
from pina import LabelTensor, Condition
from pina.geometry import CartesianDomain
from pina.equation.equation import Equation
from pina.equation.equation_factory import FixedValue
def laplace_equation(input_, output_):
force_term = (torch.sin(input_.extract(['x'])*torch.pi) *
torch.sin(input_.extract(['y'])*torch.pi))
nabla_u = nabla(output_.extract(['u']), input_)
return nabla_u - force_term
my_laplace = Equation(laplace_equation)
in_ = LabelTensor(torch.tensor([[0., 1.]], requires_grad=True), ['x', 'y'])
out_ = LabelTensor(torch.tensor([[0.]], requires_grad=True), ['u'])
class Poisson(SpatialProblem):
output_variables = ['u']
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
conditions = {
'gamma1': Condition(
location=CartesianDomain({'x': [0, 1], 'y': 1}),
equation=FixedValue(0.0)),
'gamma2': Condition(
location=CartesianDomain({'x': [0, 1], 'y': 0}),
equation=FixedValue(0.0)),
'gamma3': Condition(
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
equation=FixedValue(0.0)),
'gamma4': Condition(
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
equation=FixedValue(0.0)),
'D': Condition(
location=CartesianDomain({'x': [0, 1], 'y': [0, 1]}),
equation=my_laplace),
'data': Condition(
input_points=in_,
output_points=out_)
}
def poisson_sol(self, pts):
return -(
torch.sin(pts.extract(['x'])*torch.pi) *
torch.sin(pts.extract(['y'])*torch.pi)
)/(2*torch.pi**2)
truth_solution = poisson_sol
# make the problem
poisson_problem = Poisson()
def test_discretise_domain():
n = 10
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
for b in boundaries:
assert poisson_problem.input_pts[b].shape[0] == n
poisson_problem.discretise_domain(n, 'random', locations=boundaries)
for b in boundaries:
assert poisson_problem.input_pts[b].shape[0] == n
poisson_problem.discretise_domain(n, 'grid', locations=['D'])
assert poisson_problem.input_pts['D'].shape[0] == n**2
poisson_problem.discretise_domain(n, 'random', locations=['D'])
assert poisson_problem.input_pts['D'].shape[0] == n
poisson_problem.discretise_domain(n, 'latin', locations=['D'])
assert poisson_problem.input_pts['D'].shape[0] == n
poisson_problem.discretise_domain(n, 'lh', locations=['D'])
assert poisson_problem.input_pts['D'].shape[0] == n
def test_sampling_all_args():
n = 10
poisson_problem.discretise_domain(n, 'grid', locations=['D'])
def test_sampling_all_kwargs():
n = 10
poisson_problem.discretise_domain(n=n, mode='latin', locations=['D'])
def test_sampling_dict():
n = 10
poisson_problem.discretise_domain(
{'variables': ['x', 'y'], 'mode': 'grid', 'n': n}, locations=['D'])
def test_sampling_mixed_args_kwargs():
n = 10
with pytest.raises(ValueError):
poisson_problem.discretise_domain(n, mode='latin', locations=['D'])