remove back compatibility files for version 0.2
This commit is contained in:
committed by
Giovanni Canali
parent
ef3542486c
commit
684d691b78
49
tests/test_equation/test_equation.py
Normal file
49
tests/test_equation/test_equation.py
Normal file
@@ -0,0 +1,49 @@
|
||||
from pina.equation import Equation
|
||||
from pina.operator import grad, laplacian
|
||||
from pina import LabelTensor
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
|
||||
def eq1(input_, output_):
|
||||
u_grad = grad(output_, input_)
|
||||
u1_xx = grad(u_grad, input_, components=["du1dx"], d=["x"])
|
||||
u2_xy = grad(u_grad, input_, components=["du2dx"], d=["y"])
|
||||
return torch.hstack([u1_xx, u2_xy])
|
||||
|
||||
|
||||
def eq2(input_, output_):
|
||||
force_term = torch.sin(input_.extract(["x"]) * torch.pi) * torch.sin(
|
||||
input_.extract(["y"]) * torch.pi
|
||||
)
|
||||
delta_u = laplacian(output_.extract(["u1"]), input_)
|
||||
return delta_u - force_term
|
||||
|
||||
|
||||
def foo():
|
||||
pass
|
||||
|
||||
|
||||
def test_constructor():
|
||||
Equation(eq1)
|
||||
Equation(eq2)
|
||||
with pytest.raises(ValueError):
|
||||
Equation([1, 2, 4])
|
||||
with pytest.raises(ValueError):
|
||||
Equation(foo())
|
||||
|
||||
|
||||
def test_residual():
|
||||
eq_1 = Equation(eq1)
|
||||
eq_2 = Equation(eq2)
|
||||
|
||||
pts = LabelTensor(torch.rand(10, 2), labels=["x", "y"])
|
||||
pts.requires_grad = True
|
||||
u = torch.pow(pts, 2)
|
||||
u.labels = ["u1", "u2"]
|
||||
|
||||
eq_1_res = eq_1.residual(pts, u)
|
||||
eq_2_res = eq_2.residual(pts, u)
|
||||
|
||||
assert eq_1_res.shape == torch.Size([10, 2])
|
||||
assert eq_2_res.shape == torch.Size([10, 1])
|
||||
101
tests/test_equation/test_system_equation.py
Normal file
101
tests/test_equation/test_system_equation.py
Normal file
@@ -0,0 +1,101 @@
|
||||
from pina.equation import SystemEquation, FixedValue, FixedGradient
|
||||
from pina.operator import grad, laplacian
|
||||
from pina import LabelTensor
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
|
||||
def eq1(input_, output_):
|
||||
u_grad = grad(output_, input_)
|
||||
u1_xx = grad(u_grad, input_, components=["du1dx"], d=["x"])
|
||||
u2_xy = grad(u_grad, input_, components=["du2dx"], d=["y"])
|
||||
return torch.hstack([u1_xx, u2_xy])
|
||||
|
||||
|
||||
def eq2(input_, output_):
|
||||
force_term = torch.sin(input_.extract(["x"]) * torch.pi) * torch.sin(
|
||||
input_.extract(["y"]) * torch.pi
|
||||
)
|
||||
delta_u = laplacian(output_.extract(["u1"]), input_)
|
||||
return delta_u - force_term
|
||||
|
||||
|
||||
def foo():
|
||||
pass
|
||||
|
||||
|
||||
@pytest.mark.parametrize("reduction", [None, "mean", "sum"])
|
||||
def test_constructor(reduction):
|
||||
|
||||
# Constructor with callable functions
|
||||
SystemEquation([eq1, eq2], reduction=reduction)
|
||||
|
||||
# Constructor with Equation instances
|
||||
SystemEquation(
|
||||
[
|
||||
FixedValue(value=0.0, components=["u1"]),
|
||||
FixedGradient(value=0.0, components=["u2"]),
|
||||
],
|
||||
reduction=reduction,
|
||||
)
|
||||
|
||||
# Constructor with mixed types
|
||||
SystemEquation(
|
||||
[
|
||||
FixedValue(value=0.0, components=["u1"]),
|
||||
eq1,
|
||||
],
|
||||
reduction=reduction,
|
||||
)
|
||||
|
||||
# Non-standard reduction not implemented
|
||||
with pytest.raises(NotImplementedError):
|
||||
SystemEquation([eq1, eq2], reduction="foo")
|
||||
|
||||
# Invalid input type
|
||||
with pytest.raises(ValueError):
|
||||
SystemEquation(foo)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("reduction", [None, "mean", "sum"])
|
||||
def test_residual(reduction):
|
||||
|
||||
# Generate random points and output
|
||||
pts = LabelTensor(torch.rand(10, 2), labels=["x", "y"])
|
||||
pts.requires_grad = True
|
||||
u = torch.pow(pts, 2)
|
||||
u.labels = ["u1", "u2"]
|
||||
|
||||
# System with callable functions
|
||||
system_eq = SystemEquation([eq1, eq2], reduction=reduction)
|
||||
res = system_eq.residual(pts, u)
|
||||
|
||||
# Checks on the shape of the residual
|
||||
shape = torch.Size([10, 3]) if reduction is None else torch.Size([10])
|
||||
assert res.shape == shape
|
||||
|
||||
# System with Equation instances
|
||||
system_eq = SystemEquation(
|
||||
[
|
||||
FixedValue(value=0.0, components=["u1"]),
|
||||
FixedGradient(value=0.0, components=["u2"]),
|
||||
],
|
||||
reduction=reduction,
|
||||
)
|
||||
|
||||
# Checks on the shape of the residual
|
||||
shape = torch.Size([10, 3]) if reduction is None else torch.Size([10])
|
||||
assert res.shape == shape
|
||||
|
||||
# System with mixed types
|
||||
system_eq = SystemEquation(
|
||||
[
|
||||
FixedValue(value=0.0, components=["u1"]),
|
||||
eq1,
|
||||
],
|
||||
reduction=reduction,
|
||||
)
|
||||
|
||||
# Checks on the shape of the residual
|
||||
shape = torch.Size([10, 3]) if reduction is None else torch.Size([10])
|
||||
assert res.shape == shape
|
||||
Reference in New Issue
Block a user