use LabelTensor, fix minor, docs
This commit is contained in:
26
tests/test_deeponet.py
Normal file
26
tests/test_deeponet.py
Normal file
@@ -0,0 +1,26 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina import LabelTensor
|
||||
from pina.model import DeepONet, FeedForward as FFN
|
||||
|
||||
|
||||
data = torch.rand((20, 3))
|
||||
input_vars = ['a', 'b', 'c']
|
||||
output_vars = ['d']
|
||||
input_ = LabelTensor(data, input_vars)
|
||||
|
||||
|
||||
def test_constructor():
|
||||
branch = FFN(input_variables=['a', 'c'], output_variables=20)
|
||||
trunk = FFN(input_variables=['b'], output_variables=20)
|
||||
onet = DeepONet(trunk_net=trunk, branch_net=branch,
|
||||
output_variables=output_vars)
|
||||
|
||||
def test_forward():
|
||||
branch = FFN(input_variables=['a', 'c'], output_variables=10)
|
||||
trunk = FFN(input_variables=['b'], output_variables=10)
|
||||
onet = DeepONet(trunk_net=trunk, branch_net=branch,
|
||||
output_variables=output_vars)
|
||||
output_ = onet(input_)
|
||||
assert output_.labels == output_vars
|
||||
Reference in New Issue
Block a user