diff --git a/docs/source/_rst/tutorials/tutorial13/tutorial.rst b/docs/source/_rst/tutorials/tutorial13/tutorial.rst index 5e70a4a..0b276cd 100644 --- a/docs/source/_rst/tutorials/tutorial13/tutorial.rst +++ b/docs/source/_rst/tutorials/tutorial13/tutorial.rst @@ -34,12 +34,14 @@ networks `__. The one-dimensional Poisson problem we aim to solve is mathematically written as: -:raw-latex:`\begin{equation} -\begin{cases} -\Delta u (x) + f(x) = 0 \quad x \in [0,1], \\ -u(x) = 0 \quad x \in \partial[0,1], \\ -\end{cases} -\end{equation}` +.. math:: + + \begin{equation} + \begin{cases} + \Delta u (x) + f(x) = 0 \quad x \in [0,1], \\ + u(x) = 0 \quad x \in \partial[0,1], \\ + \end{cases} + \end{equation} We impose the solution as :math:`u(x) = \sin(2\pi x) + 0.1 \sin(50\pi x)` and obtain the force @@ -95,8 +97,7 @@ scales. Below we run a simulation using the ``PINN`` solver and the self adaptive ``SAPINN`` solver, using a -```FeedForward`` `__ -model. We used a ``MultiStepLR`` scheduler to decrease the learning rate +``FeedForward`` model. We used a ``MultiStepLR`` scheduler to decrease the learning rate slowly during training (it takes around 2 minutes to run on CPU). .. code:: ipython3 @@ -130,19 +131,6 @@ slowly during training (it takes around 2 minutes to run on CPU). TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs HPU available: False, using: 0 HPUs - - -.. parsed-literal:: - - Epoch 4999: 100%|██████████| 1/1 [00:00<00:00, 150.58it/s, v_num=69, gamma0_loss=2.61e+3, gamma1_loss=2.61e+3, D_loss=409.0, mean_loss=1.88e+3] - -.. parsed-literal:: - - `Trainer.fit` stopped: `max_epochs=5000` reached. - - -.. parsed-literal:: - Epoch 4999: 100%|██████████| 1/1 [00:00<00:00, 97.66it/s, v_num=69, gamma0_loss=2.61e+3, gamma1_loss=2.61e+3, D_loss=409.0, mean_loss=1.88e+3] @@ -152,19 +140,6 @@ slowly during training (it takes around 2 minutes to run on CPU). TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs HPU available: False, using: 0 HPUs - - -.. parsed-literal:: - - Epoch 4999: 100%|██████████| 1/1 [00:00<00:00, 88.18it/s, v_num=70, gamma0_loss=151.0, gamma1_loss=148.0, D_loss=6.38e+5, mean_loss=2.13e+5] - -.. parsed-literal:: - - `Trainer.fit` stopped: `max_epochs=5000` reached. - - -.. parsed-literal:: - Epoch 4999: 100%|██████████| 1/1 [00:00<00:00, 65.77it/s, v_num=70, gamma0_loss=151.0, gamma1_loss=148.0, D_loss=6.38e+5, mean_loss=2.13e+5] @@ -290,19 +265,6 @@ feel free to try also with our PINN variants (``SAPINN``, ``GPINN``, TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs HPU available: False, using: 0 HPUs - - -.. parsed-literal:: - - Epoch 4999: 100%|██████████| 1/1 [00:00<00:00, 94.64it/s, v_num=71, gamma0_loss=3.91e-5, gamma1_loss=3.91e-5, D_loss=0.000151, mean_loss=0.000113] - -.. parsed-literal:: - - `Trainer.fit` stopped: `max_epochs=5000` reached. - - -.. parsed-literal:: - Epoch 4999: 100%|██████████| 1/1 [00:00<00:00, 72.21it/s, v_num=71, gamma0_loss=3.91e-5, gamma1_loss=3.91e-5, D_loss=0.000151, mean_loss=0.000113]